This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257924 #11 Jul 13 2015 04:27:25 %S A257924 3,7,31,89,199,8009,11551,20129,23549,38609,47501,67231,96221,97001, %T A257924 103409,111871,120473,131071,143261,146681,168869,174761,183091, %U A257924 193951,196181,208279,208961,219727,229769,237691,238519,240641,247759,270271,290249,291101,293201,337039,340577,352831 %N A257924 Primes p with p-1, p+1, prime(p)-1 and prime(p)+1 all practical. %C A257924 Conjecture: The sequence contains infinitely many terms. In other words, there are infinitely many prime numbers p such that {p-1, p, p+1} and {prime(p)-1, prime(p), prime(p)+1} are both "sandwiches of the first kind" (A210479). %H A257924 Zhi-Wei Sun, <a href="/A257924/b257924.txt">Table of n, a(n) for n = 1..2000</a> %H A257924 Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;20e70044.1301">Sandwiches with primes and practical numbers</a>, a message to Number Theory List, Jan. 13, 2013. %H A257924 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1211.1588">Conjectures involving primes and quadratic forms</a>, arXiv:1211.1588. %e A257924 a(1) = 3 since 3 is prime with 3-1, 3+1, prime(3)-1 = 4 and prime(3)+1 = 6 all practical. %e A257924 a(3) = 31 since 31 is prime with 31-1, 31+1, prime(31)-1 = 126 and prime(31)+1 = 128 all practical. %t A257924 f[n_]:=FactorInteger[n] %t A257924 Pow[n_,i_]:=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) %t A257924 Con[n_]:=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] %t A257924 pr[n_]:=n>0&&(n<3||Mod[n,2]+Con[n]==0) %t A257924 n=0;Do[If[pr[Prime[k]-1]&&pr[Prime[k]+1]&&pr[Prime[Prime[k]]-1]&&pr[Prime[Prime[k]]+1],n=n+1;Print[n," ",Prime[k]]],{k,1,30201}] %Y A257924 Cf. A000040, A005153, A209236, A210479, A257922, A258838, A259539. %K A257924 nonn %O A257924 1,1 %A A257924 _Zhi-Wei Sun_, Jul 13 2015