This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257935 #26 Jul 02 2015 10:17:23 %S A257935 1,0,-5,3,-61,5,-125,7,-121,9,-325,11,-17071,13,-35,15,-7697,17,36685, %T A257935 19,-177911,21,852995,23,-236396851,25,8553025,27,-23749473209,29, %U A257935 8615841061175,31,-7709321049377,33,2577687858265,35,-26315271553088022793,37 %N A257935 Numerators of the inverse binomial transform of the Bernoulli numbers with B(1)=1. %C A257935 Difference table of 1, 1, 1/6, 0, -1/30, ... : %C A257935 1, 1, 1/6, 0, -1/30, 0, 1/42, 0, ... %C A257935 0, -5/6, -1/6, -1/30, 1/30, 1/42, -1/42, ... %C A257935 -5/6, 2/3, 2/15, 1/15, -1/105, -1/21, ... %C A257935 3/2, -8/15, -1/15, -8/105, -4/105, ... %C A257935 -61/30, 7/15, -1/105, 4/105, ... %C A257935 5/2, -10/21, 1/21, ... %C A257935 -125/42, 11/21, ... %C A257935 7/2, ... %C A257935 etc. %C A257935 The inverse binomial transform is the first column. a(n) is the n-th term of the numerators. See A027641(n+1). %C A257935 Denominators: A176591. %C A257935 Is a(4n+2) a multiple of 5? This is true, at least up to 4n+2 = 998. - _Jean-François Alcover_, Jul 02 2015 %H A257935 Colin Barker, <a href="/A257935/b257935.txt">Table of n, a(n) for n = 0..629</a> %F A257935 a(n) = numerators of A027641(n)/A027642(n) - (-1)^n*n/2. %F A257935 a(n) = (A176328(n) - (-1)^n*n)*A176591(n). %F A257935 a(n) = 2*A027641(n)*A176591(n)/A027642(n) - A176328(n). %e A257935 By the first formula: numerators of 1-0=1, -1/2+1/2=0, 1/6-1=-5/6, 0+3/2=3/2,.... %t A257935 max = 40; B[1] = 1; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Numerator; Table[a[n], {n, 0, max-1}] (* _Jean-François Alcover_, May 20 2015 *) %o A257935 (PARI) %o A257935 firstdiff(s) = my(t=vector(#s-1)); for(i=2, #s, t[i-1]=s[i]-s[i-1]); t %o A257935 a257935(k) = { %o A257935 my(s=[], b = concat([1,1], vector(k, n, n++; bernfrac(n)))); %o A257935 until(#b<2, %o A257935 s = concat(s, numerator(b[1])); %o A257935 b = firstdiff(b) %o A257935 ); %o A257935 s %o A257935 } %o A257935 a257935(50) \\ _Colin Barker_, May 13 2015 %Y A257935 Cf. A257106, A027641/A027642, A164555/A027642, A176327/A027642, A176328/A176591, A026741. %K A257935 sign %O A257935 0,3 %A A257935 _Paul Curtz_, May 13 2015 %E A257935 More terms from _Colin Barker_, May 13 2015