cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A279724 Transpose of array A257943.

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 4, 8, 14, 14, 5, 11, 23, 41, 41, 6, 14, 32, 68, 122, 122, 7, 17, 41, 95, 203, 365, 365, 8, 20, 50, 122, 284, 608, 1094, 1094, 9, 23, 59, 149, 365, 851, 1823, 3281, 3281, 10, 26, 68, 176, 446, 1094, 2552, 5468, 9842, 9842
Offset: 1

Views

Author

L. Edson Jeffery, Dec 17 2016

Keywords

Examples

			Array A begins as:
.      1   2   5   14   41   122   365   1094   3281    9842
.      2   5  14   41  122   365  1094   3281   9842   29525
.      3   8  23   68  203   608  1823   5468  16403   49208
.      4  11  32   95  284   851  2552   7655  22964   68891
.      5  14  41  122  365  1094  3281   9842  29525   88574
.      6  17  50  149  446  1337  4010  12029  36086  108257
.      7  20  59  176  527  1580  4739  14216  42647  127940
.      8  23  68  203  608  1823  5468  16403  49208  147623
.      9  26  77  230  689  2066  6197  18590  55769  167306
.     10  29  86  257  770  2309  6926  20777  62330  186989
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(1 + 3^(k - 1)*(2*n - 1))/2, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    Flatten[Table[(1 + 3^(k - 1)*(2*(n - k) + 1))/2, {n, 10}, {k, n}]]

Formula

A(n,k) = (1 + 3^(k-1)*(2*n - 1))/2, n,k >= 1.
Showing 1-1 of 1 results.