cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257945 Decimal expansion of abs(i/(i + i/(i + i/...))) and abs(i/(1 + i/(1 + i/...))), i being the imaginary unit.

Original entry on oeis.org

6, 9, 3, 2, 0, 5, 4, 6, 4, 6, 2, 3, 7, 9, 7, 3, 2, 0, 4, 3, 4, 3, 6, 3, 7, 0, 4, 2, 2, 4, 1, 3, 8, 6, 8, 7, 9, 4, 1, 0, 2, 1, 7, 5, 0, 1, 6, 9, 2, 1, 9, 0, 1, 3, 3, 9, 9, 5, 5, 5, 8, 6, 7, 5, 2, 9, 5, 5, 8, 1, 4, 8, 8, 3, 1, 6, 6, 1, 0, 4, 3, 0, 2, 2, 3, 3, 6, 0, 6, 9, 1, 5, 2, 6, 8, 1, 8, 5, 8, 3, 5, 0, 5, 6, 4
Offset: 0

Views

Author

Stanislav Sykora, May 29 2015

Keywords

Comments

Set v = A156590 and u = (A156548 - 1). Then the continued fractions evaluate to i/(i + i/(i + i/...)) = (sqrt(4*i - 1) - i)/2 = v + u*i and i/(1 + i/(1 + i/...)) = (sqrt(4*i + 1) - 1)/2 = u + v*i. They can be evaluated either explicitly or as limits of the convergent recursive mappings z -> i/(i + z) and z -> i/(1 + z), respectively, starting, for example, with z = 0.
An algebraic integer of degree 8. - Charles R Greathouse IV, Jun 02 2015

Examples

			0.69320546462379732043436370422413868794102175016921901339955586752...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[1 + Sqrt[17] - Sqrt[2*(1 + Sqrt[17])]]/2, 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    sqrt(1+sqrt(17)-sqrt(2*(1+sqrt(17))))/2
    
  • PARI
    polrootsreal(x^8-x^6-2*x^4-x^2+1)[3] \\ Charles R Greathouse IV, Jun 02 2015

Formula

Equals sqrt(1 + sqrt(17) - sqrt(2*(1 + sqrt(17))))/2.