A257965 Numbers n such that n^3 = a^2 + b^2 and a^3 + b^3 is a square, for some positive integers a and b.
2, 32, 125, 162, 512, 1250, 2000, 2592, 4802, 8192, 10125, 13122, 20000, 29282, 32000, 41472, 49000, 57122, 76832, 78125, 92450, 101250, 131072, 152881, 162000, 167042, 207025, 209952, 215306, 260642, 300125, 320000, 388962, 468512, 512000, 559682, 663552
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..526 (terms < 10^10)
- Giovanni Resta, Decompositions for the first 526 terms.
Programs
-
Mathematica
L = {}; n = 0; Clear[x, y]; While[n < 5000, n++; If[ And @@ (EvenQ /@ Last /@ Select[FactorInteger[n], Mod[First[#] + 1, 4] == 0 &]) && False =!= (sol = Reduce[n^3 == x^2 + y^2 && x >= y > 0, {x, y}, Integers]), ss = {x, y} /. List@ToRules@sol; If[{} != Select[ss, IntegerQ@ Sqrt@ Total[#^3] &, 1], AppendTo[L, n]; Print@L]]]; L (* Giovanni Resta, May 18 2015 *)
-
PARI
is(n)={is_A000404(n)&&for(i=1,#T=sum2sqr(n^3),T[i][1]&&issquare(T[i][1]^3+T[i][2]^3)&&return(T[i]))} \\ Uses sum2sqr(), cf. A133388. Returns [a,b] if n is in the sequence, 0 else.
Extensions
Corrected and extended by Giovanni Resta, May 18 2015
Comments