cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257965 Numbers n such that n^3 = a^2 + b^2 and a^3 + b^3 is a square, for some positive integers a and b.

Original entry on oeis.org

2, 32, 125, 162, 512, 1250, 2000, 2592, 4802, 8192, 10125, 13122, 20000, 29282, 32000, 41472, 49000, 57122, 76832, 78125, 92450, 101250, 131072, 152881, 162000, 167042, 207025, 209952, 215306, 260642, 300125, 320000, 388962, 468512, 512000, 559682, 663552
Offset: 1

Views

Author

M. F. Hasler, May 14 2015

Keywords

Comments

A subsequence of A000404.
Two subsequences are given by: n = 2*m^4 with a = b = 2*m^6, and n = 5^3*m^4 with a = 5^4*m^6, b = 2*a.

Programs

  • Mathematica
    L = {}; n = 0; Clear[x, y]; While[n < 5000, n++; If[ And @@ (EvenQ /@ Last /@ Select[FactorInteger[n], Mod[First[#] + 1, 4] == 0 &]) && False =!= (sol = Reduce[n^3 == x^2 + y^2 && x >= y > 0, {x, y}, Integers]), ss = {x, y} /. List@ToRules@sol; If[{} != Select[ss, IntegerQ@ Sqrt@ Total[#^3] &, 1], AppendTo[L, n]; Print@L]]]; L (* Giovanni Resta, May 18 2015 *)
  • PARI
    is(n)={is_A000404(n)&&for(i=1,#T=sum2sqr(n^3),T[i][1]&&issquare(T[i][1]^3+T[i][2]^3)&&return(T[i]))} \\ Uses sum2sqr(), cf. A133388. Returns [a,b] if n is in the sequence, 0 else.

Extensions

Corrected and extended by Giovanni Resta, May 18 2015