This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257972 #27 Mar 23 2020 17:32:46 %S A257972 5,4,2,6,6,6,7,3,2,5,7,0,2,8,2,7,5,4,2,8,8,8,5,0,7,4,7,6,3,9,6,2,4,7, %T A257972 4,8,7,9,1,4,2,0,3,6,3,7,6,3,0,9,2,7,2,0,0,9,5,0,7,8,6,6,0,1,3,8,1,0, %U A257972 1,1,7,9,9,6,4,3,2,3,3,3,6,7,3,6,3,9,8,3,4,5,7,0,2,2,3,6,5,4,2,0,4,8,2,8,6,3,8,5,5 %N A257972 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n - log(n)). %C A257972 This alternating series converges quite slowly, but can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy. %H A257972 Iaroslav V. Blagouchine, <a href="/A257972/b257972.txt">Table of n, a(n) for n = 0..1000</a> %F A257972 Equals 1/2 + integral_{x=0..infinity} (x-arctan(x))/(sinh(Pi*x)*((1-1/2*log(1+x^2))^2 + (x-arctan(x))^2)). %e A257972 0.542666732570282754288850747639624748791420363763092... %p A257972 evalf(sum((-1)^(n-1)/(n-log(n)), n = 1..infinity), 120); %p A257972 evalf(1/2+Int((x-arctan(x))/(sinh(Pi*x)*((1-(1/2)*log(1+x^2))^2+(x-arctan(x))^2)), x = 0..infinity), 120); %t A257972 N[NSum[(-1)^(n-1)/(n-Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],119] %t A257972 N[1/2 + NIntegrate[(x-ArcTan[x])/(Sinh[Pi*x]*((1-1/2*Log[1+x^2])^2 + (x-ArcTan[x])^2)), {x, 0, 1, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],119] (* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. *) %o A257972 (PARI) default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n-log(n))) %o A257972 (PARI) allocatemem(50000000); %o A257972 default(realprecision, 1200); 1/2 + intnum(x=0,1, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=1,3, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=3,1000, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) /* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. */ %o A257972 (Sage) %o A257972 from mpmath import mp, nsum, inf %o A257972 mp.dps = 110; mp.pretty = True %o A257972 nsum(lambda n: (-1)^(n-1)/(n-log(n)), [1, inf], method='alternating') # _Peter Luschny_, May 17 2015 %Y A257972 Cf. A099769, A257837, A257812, A257898, A257960, A257964. %K A257972 nonn,cons %O A257972 0,1 %A A257972 _Iaroslav V. Blagouchine_, May 15 2015