cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257974 Prime numbers that are not the sum of one or more consecutive triangular numbers.

This page as a plain text file.
%I A257974 #37 Jan 19 2019 04:14:59
%S A257974 2,5,7,11,13,17,23,29,37,41,43,47,53,59,61,67,71,73,79,89,97,101,103,
%T A257974 107,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,
%U A257974 211,223,227,229,233,239,241,257,263,269,271,277,281,283
%N A257974 Prime numbers that are not the sum of one or more consecutive triangular numbers.
%C A257974 Subsequence of primes of A050941. - _Michel Marcus_, Dec 14 2015
%C A257974 Prime numbers that are not the difference of two tetrahedral numbers (A000292). - _Franklin T. Adams-Watters_, Dec 16 2015
%H A257974 Chai Wah Wu, <a href="/A257974/b257974.txt">Table of n, a(n) for n = 1..10000</a>
%e A257974 From _Michael De Vlieger_, Nov 06 2015: (Start)
%e A257974 3 is a triangular number thus is not a term.
%e A257974 The triangular numbers <= 7 are {1, 3, 6}. None of these are 7. 7 is not found among the sums of adjacent pairs of terms, i.e., {{1, 3}, {3, 6}} = {4, 9}. The sum of all numbers {1, 3, 6} = 10. Thus 7 is a term.
%e A257974 The triangular numbers <= 19 are {1, 3, 6, 10, 15}. 19 is not a triangular number. 19 is not found among sums of pairs of adjacent terms {4, 9, 16, 25} nor among those of quartets of adjacent terms {20, 34}, but is found among sums of triples of adjacent terms {10, 19, 31}. Thus 19 is not a term. (End)
%p A257974 isA257974 := proc(n)
%p A257974     if isprime(n) then
%p A257974         return not isA034706(n) ;
%p A257974     else
%p A257974         false ;
%p A257974     end if;
%p A257974 end proc:
%p A257974 for n from 0 to 400 do
%p A257974     if isA257974(n) then
%p A257974         printf("%d,",n) ;
%p A257974     end if;
%p A257974 end do: # _R. J. Mathar_, Dec 14 2015
%t A257974 t = Array[Binomial[# + 1, 2] &, {10^4}]; fQ[n_] := Block[{s}, s = TakeWhile[t, # <= n &]; AnyTrue[Flatten[Total /@ Partition[s, #, 1] & /@ Range[Length@ s - 1]], # == n &]]; Select[Prime@ Range@ 120, ! fQ@ # &] (* _Michael De Vlieger_, Nov 06 2015, Version 10 *)
%Y A257974 Cf. A050941, A000217, A000292, A125602, A269414.
%K A257974 nonn
%O A257974 1,1
%A A257974 _Vicente Izquierdo Gomez_, Nov 05 2015
%E A257974 More terms from _Michael De Vlieger_, Nov 06 2015