cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257988 Number of parts that are larger than the number of 1's in the partition having Heinz number n.

This page as a plain text file.
%I A257988 #19 Dec 10 2016 06:23:58
%S A257988 0,0,1,0,1,1,1,0,2,1,1,0,1,1,2,0,1,2,1,1,2,1,1,0,2,1,3,1,1,2,1,0,2,1,
%T A257988 2,0,1,1,2,0,1,2,1,1,3,1,1,0,2,2,2,1,1,3,2,1,2,1,1,1,1,1,3,0,2,2,1,1,
%U A257988 2,2,1,0,1,1,3,1,2,2,1,0,4,1,1,1,2,1,2,1,1,3,2,1,2,1,2,0,1,2,3,2,1,2,1
%N A257988 Number of parts that are larger than the number of 1's in the partition having Heinz number n.
%C A257988 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1...r) (a concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
%C A257988 In the Maple program the subprogram b yields the number of 1's in the partition having Heinz number n and the subprogram B yields the partition having Heinz number n.
%C A257988 The considered partition statistic is needed in the partition statistic "crank" (A257989).
%H A257988 Alois P. Heinz, <a href="/A257988/b257988.txt">Table of n, a(n) for n = 1..20000</a>
%H A257988 G. E. Andrews and F. G. Garvan, <a href="http://dx.doi.org/10.1090/S0273-0979-1988-15637-6">Dyson's crank of a partition</a>, Bull. Amer. Math. Soc., 18 (1988), 167-171.
%e A257988 a(252) = 1 because the partition having Heinz number 252 = 2^2 * 3^2 * 7 is [1,1,2,2,4] and exactly one part, namely 4, is larger than 2 (the number of 1's).
%e A257988 a(945) = 5 because the partition having Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] and all parts are larger than 0 (the number of 1's).
%p A257988 with(numtheory): a := proc (n) local b, B, c, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: c := 0: for i to bigomega(n) do if b(n) < B(n)[i] then c := c+1 else  end if end do: c end proc: seq(a(n), n = 1 .. 150);
%p A257988 # second Maple program:
%p A257988 a:= n->(l->nops(select(x->x>add(`if`(i=1, 1, 0), i=l), l)))(
%p A257988        [seq(numtheory[pi](i[1])$i[2], i=ifactors(n)[2])]):
%p A257988 seq(a(n), n=1..100);  # _Alois P. Heinz_, May 10 2016
%t A257988 a[n_] := Function[l, Length[Select[l, # > Sum[If[i == 1, 1, 0], {i, l}]&]]][Flatten @ Table[Array[PrimePi[i[[1]]]&, i[[2]]], {i, FactorInteger[n]}] ]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Dec 10 2016 after _Alois P. Heinz_ *)
%Y A257988 Cf. A257989, A215366.
%K A257988 nonn
%O A257988 1,9
%A A257988 _Emeric Deutsch_, May 16 2015