This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257989 #27 Apr 05 2021 21:07:39 %S A257989 -1,2,-2,3,0,4,-3,2,0,5,-2,6,0,3,-4,7,1,8,-1,4,0,9,-3,3,0,2,-1,10,1, %T A257989 11,-5,5,0,4,-2,12,0,6,-3,13,1,14,-1,3,0,15,-4,4,1,7,-1,16,2,5,-2,8,0, %U A257989 17,-1,18,0,4,-6,6,1,19,-1,9,1,20,-3,21,0,3,-1,5,1,22,-4,2,0,23,-1,7,0,10,-2,24,2,6,-1 %N A257989 The crank of the partition having Heinz number n. %C A257989 The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's). %C A257989 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. %C A257989 In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n. %H A257989 Alois P. Heinz, <a href="/A257989/b257989.txt">Table of n, a(n) for n = 2..10000</a> %H A257989 G. E. Andrews and F. Garvan, <a href="http://dx.doi.org/10.1090/S0273-0979-1988-15637-6">Dyson's crank of a partition</a>, Bull. Amer. Math. Soc., 18 (1988), 167-171. %H A257989 B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, <a href="http://dx.doi.org/10.1016/j.jcta.2004.06.013">Cranks and dissections in Ramanujan's lost notebook</a>, J. Comb. Theory, Ser. A, 109, 2005, 91-120. %H A257989 B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, <a href="http://www.math.uiuc.edu/~berndt/articles/finalproblem.pdf">Cranks - really the final problem</a>, Ramanujan J., 23, 2010, 3-15. %H A257989 G. E. Andrews, K. Ono, <a href="http://dx.doi.org/10.1073/pnas.0507844102">Ramanujan's congruences and Dyson's crank</a>, Proc. Natl. Acad. Sci. USA, 102, 2005, 15277. %H A257989 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000474/">Dyson's crank of a partition.</a> %H A257989 K. Mahlburg, <a href="http://dx.doi.org/10.1073/pnas.0506702102">Partition congruences and the Andrews-Garvan-Dyson crank</a>, Proc. Natl. Acad. Sci. USA, 102, 2005, 15373-15376. %H A257989 Wikipedia, <a href="http://en.wikipedia.org/wiki/Crank_of_a_partition">Crank of a partition</a> %e A257989 a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2. %e A257989 a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4. %e A257989 From _Gus Wiseman_, Apr 05 2021: (Start) %e A257989 The partitions (center) with each Heinz number (left), and the corresponding terms (right): %e A257989 2: (1) -> -1 %e A257989 3: (2) -> 2 %e A257989 4: (1,1) -> -2 %e A257989 5: (3) -> 3 %e A257989 6: (2,1) -> 0 %e A257989 7: (4) -> 4 %e A257989 8: (1,1,1) -> -3 %e A257989 9: (2,2) -> 2 %e A257989 10: (3,1) -> 0 %e A257989 11: (5) -> 5 %e A257989 12: (2,1,1) -> -2 %e A257989 13: (6) -> 6 %e A257989 14: (4,1) -> 0 %e A257989 15: (3,2) -> 3 %e A257989 16: (1,1,1,1) -> -4 %e A257989 (End) %p A257989 with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150); %t A257989 B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]]; %t A257989 b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]]; %t A257989 c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct]; %t A257989 a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]]; %t A257989 Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Apr 25 2017, after _Emeric Deutsch_ *) %t A257989 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A257989 ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]]; %t A257989 Table[ck[primeMS[n]],{n,2,30}] (* _Gus Wiseman_, Apr 05 2021 *) %Y A257989 Cf. A215366, A257988. %Y A257989 Indices of zeros are A342192. %Y A257989 A001522 counts partitions of crank 0. %Y A257989 A003242 counts anti-run compositions. %Y A257989 A064391 counts partitions by crank. %Y A257989 A064428 counts partitions of nonnegative crank. %Y A257989 Cf. A000005, A000726, A056239, A112798, A124010, A224958, A325351, A325352. %K A257989 sign %O A257989 2,2 %A A257989 _Emeric Deutsch_, May 18 2015