cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257991 Number of odd parts in the partition having Heinz number n.

This page as a plain text file.
%I A257991 #19 Jun 17 2024 07:15:08
%S A257991 0,1,0,2,1,1,0,3,0,2,1,2,0,1,1,4,1,1,0,3,0,2,1,3,2,1,0,2,0,2,1,5,1,2,
%T A257991 1,2,0,1,0,4,1,1,0,3,1,2,1,4,0,3,1,2,0,1,2,3,0,1,1,3,0,2,0,6,1,2,1,3,
%U A257991 1,2,0,3,1,1,2,2,1,1,0,5,0,2,1,2,2,1,0,4
%N A257991 Number of odd parts in the partition having Heinz number n.
%C A257991 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
%C A257991 In the Maple program the subprogram B yields the partition with Heinz number n.
%D A257991 George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
%D A257991 Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
%H A257991 Alois P. Heinz, <a href="/A257991/b257991.txt">Table of n, a(n) for n = 1..20000</a>
%F A257991 From _Amiram Eldar_, Jun 17 2024: (Start)
%F A257991 Totally additive with a(p) = 1 if primepi(p) is odd, and 0 otherwise.
%F A257991 a(n) = A257992(n) + A195017(n). (End)
%e A257991 a(12) = 2 because the partition having Heinz number 12 = 2*2*3 is [1,1,2], having 2 odd parts.
%p A257991 with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: seq(a(n), n = 1 .. 135);
%p A257991 # second Maple program:
%p A257991 a:= n-> add(`if`(numtheory[pi](i[1])::odd, i[2], 0), i=ifactors(n)[2]):
%p A257991 seq(a(n), n=1..120);  # _Alois P. Heinz_, May 09 2016
%t A257991 a[n_] := Sum[If[PrimePi[i[[1]]] // OddQ, i[[2]], 0], {i, FactorInteger[n]} ]; Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Dec 10 2016, after _Alois P. Heinz_ *)
%Y A257991 Cf. A001222, A195017, A215366, A257992.
%K A257991 nonn
%O A257991 1,4
%A A257991 _Emeric Deutsch_, May 18 2015