cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257992 Number of even parts in the partition having Heinz number n.

This page as a plain text file.
%I A257992 #18 Jun 17 2024 07:14:55
%S A257992 0,0,1,0,0,1,1,0,2,0,0,1,1,1,1,0,0,2,1,0,2,0,0,1,0,1,3,1,1,1,0,0,1,0,
%T A257992 1,2,1,1,2,0,0,2,1,0,2,0,0,1,2,0,1,1,1,3,0,1,2,1,0,1,1,0,3,0,1,1,0,0,
%U A257992 1,1,1,2,0,1,1,1,1,2,1,0,4,0,0,2,0,1,2
%N A257992 Number of even parts in the partition having Heinz number n.
%C A257992 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
%C A257992 In the Maple program the subprogram B yields the partition with Heinz number n.
%D A257992 George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
%D A257992 Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
%H A257992 Alois P. Heinz, <a href="/A257992/b257992.txt">Table of n, a(n) for n = 1..20000</a>
%F A257992 From _Amiram Eldar_, Jun 17 2024: (Start)
%F A257992 Totally additive with a(p) = 1 if primepi(p) is even, and 0 otherwise.
%F A257992 a(n) = A257991(n) - A195017(n). (End)
%e A257992 a(18) = 2 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having 2 even parts.
%p A257992 with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 0 then ct := ct+1 else  end if end do: ct end proc: seq(a(n), n = 1 .. 135);
%p A257992 # second Maple program:
%p A257992 a:= n-> add(`if`(numtheory[pi](i[1])::even, i[2], 0), i=ifactors(n)[2]):
%p A257992 seq(a(n), n=1..120);  # _Alois P. Heinz_, May 09 2016
%t A257992 a[n_] := Sum[If[PrimePi[i[[1]]] // EvenQ, i[[2]], 0], {i, FactorInteger[n]} ]; a[1] = 0; Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Dec 10 2016 after _Alois P. Heinz_ *)
%Y A257992 Cf. A001222, A195017, A215366, A257991.
%K A257992 nonn
%O A257992 1,9
%A A257992 _Emeric Deutsch_, May 18 2015