cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257994 Number of prime parts in the partition having Heinz number n.

This page as a plain text file.
%I A257994 #24 Nov 03 2023 11:21:30
%S A257994 0,0,1,0,1,1,0,0,2,1,1,1,0,0,2,0,1,2,0,1,1,1,0,1,2,0,3,0,0,2,1,0,2,1,
%T A257994 1,2,0,0,1,1,1,1,0,1,3,0,0,1,0,2,2,0,0,3,2,0,1,0,1,2,0,1,2,0,1,2,1,1,
%U A257994 1,1,0,2,0,0,3,0,1,1,0,1,4,1,1,1,2,0,1,1,0,3
%N A257994 Number of prime parts in the partition having Heinz number n.
%C A257994 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
%C A257994 In the Maple program the subprogram B yields the partition with Heinz number n.
%C A257994 The number of nonprime parts is given by A330944, so A001222(n) = a(n) + A330944(n). - _Gus Wiseman_, Jan 17 2020
%D A257994 George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
%H A257994 Alois P. Heinz, <a href="/A257994/b257994.txt">Table of n, a(n) for n = 1..20000</a>
%F A257994 Additive with a(p^e) = e if primepi(p) is prime, and 0 otherwise. - _Amiram Eldar_, Nov 03 2023
%e A257994 a(30) = 2 because the partition with Heinz number 30 = 2*3*5 is [1,2,3], having 2 prime parts.
%p A257994 with(numtheory): a := proc (n) local B, ct, s: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for s to nops(B(n)) do if isprime(B(n)[s]) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 130);
%t A257994 B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[  m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
%t A257994 a[n_] := Module[{ct, s}, ct = 0; For[s = 1, s <= Length[B[n]], s++, If[ PrimeQ[B[n][[s]]], ct++]]; ct];
%t A257994 Table[a[n], {n, 1, 130}] (* _Jean-François Alcover_, Apr 25 2017, translated from Maple *)
%t A257994 Table[Total[Cases[FactorInteger[n],{p_,k_}/;PrimeQ[PrimePi[p]]:>k]],{n,30}] (* _Gus Wiseman_, Jan 17 2020 *)
%o A257994 (PARI) a(n) = my(f = factor(n)); sum(i=1, #f~, if(isprime(primepi(f[i, 1])), f[i, 2], 0)); \\ _Amiram Eldar_, Nov 03 2023
%Y A257994 Positions of positive terms are A331386.
%Y A257994 Primes of prime index are A006450.
%Y A257994 Products of primes of prime index are A076610.
%Y A257994 The number of nonprime prime indices is A330944.
%Y A257994 Cf. A000040, A000720, A001222, A007821, A018252, A056239, A112798, A215366, A279952, A302242, A320628, A330945.
%K A257994 nonn,easy
%O A257994 1,9
%A A257994 _Emeric Deutsch_, May 20 2015