cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257996 Let s0 and s1 be the sums of the reciprocals of the even and odd divisors of n, respectively. The sequence lists the numbers n such that 3*s0 - 2*s1 = 1.

This page as a plain text file.
%I A257996 #16 Sep 12 2017 08:59:38
%S A257996 120,1456,121024,2198352216064,576458003527499776
%N A257996 Let s0 and s1 be the sums of the reciprocals of the even and odd divisors of n, respectively. The sequence lists the numbers n such that 3*s0 - 2*s1 = 1.
%C A257996 Let D0 = {d0(i)}, i = 1..p, the set of the p even divisors of a number n and D1 = {d1(n)}, j = 1..q the set of the q odd divisors of n. Then a(n) is the number such that 3*Sum_{i=1..p} 1/d0(i)- 2*Sum_{j=1..q} 1/d1(j) = 1.
%C A257996 Property of the sequence:
%C A257996 We observe that a(n) = 2^(k+1)*(2^k-1)*(2^(k+1) - 3) = (2*A000668(m) + 2)*A000668(m)*(2*A000668(m) - 1) where A000668(m) = 2^k - 1 is a Mersenne prime and (2*A000668(m)-1) = 2^(k+1)- 3 is also a prime number.
%C A257996 The corresponding values of k are 2, 3, 5, 13, 19, ... and the corresponding values of m are 1, 2, 3, 5, 7, ...
%C A257996 Generalization:
%C A257996 It is possible to introduce general sequences of numbers such that a*s0 + b*s1 = c with very interesting properties for some integers a, b, c.
%C A257996 Example 1: with (a, b, c) = (2, -1, 1) we find the sequence A064591 = 24, 112, 1984, 32512, ... (non-unitary perfect numbers).
%C A257996 Example 2: with (a, b, c) = (2, -1, 0) we find the sequence A016825(n) = 2, 6, 10, 14, 18, 22, ...
%C A257996 Example 3: with (a, b, c) = (1, 1, 2) we find the sequence A000396(n) = 6, 28, 496, 8128,... (perfect numbers).
%C A257996 Example 4: with (a, b, c) = (4, -3, 1) we find the sequence 48, 224, 3968, 65024, ... = 2*A064591(n) = A000668(n)*2^p for some p where A000668 lists the Mersenne primes.
%C A257996 Example 5: with (a, b, c) = (6, -5, 1) we find the sequence 240, 2912, 242048, ... which equals twice the sequence obtained with (a, b, c) = (3, -2, 1).
%C A257996 Example 6: with (a, b, c) = (7, -6, 1) we find the sequence 2150, 13104, 24800, ...
%e A257996 120 = 2^3*3*5 = (2*A000668(1)+2)* A000668(1)*(2*A000668(1)-1);
%e A257996 1456 = 2^4*7*13 = (2*A000668(2)+2)* A000668(2)*(2*A000668(2)-1);
%e A257996 121024 = 2^6*31*61 =(2*A000668(3)+2)* A000668(3)*(2*A000668(3)-1);
%e A257996 2198352216064 = 2^14*8191*16381= (2*A000668(5)+2)*A000668(5)*(2*A000668(5)-1);
%e A257996 576458003527499776 = 2^20*524287*1048573 = (2*A000668(7)+2)* A000668(7)*(2*A000668(7)-1).
%p A257996 with(numtheory):nn:=100000:
%p A257996 for n from 2 by 2 to nn do :
%p A257996    x:=divisors(n):n0:=nops(x):s:=sum('x[i]', 'i'=1..n0):
%p A257996     s0:=0:s1:=0:
%p A257996     for k from 1 to n0 do:
%p A257996      if irem(x[k],2)=0
%p A257996      then
%p A257996      s0:=s0+1/x[k]
%p A257996      else
%p A257996      s1:=s1+1/x[k]:
%p A257996      fi:
%p A257996     od:
%p A257996     if 3*s0-2*s1=1 then print(n):else fi:od:
%t A257996 Do[s0=0;s1=0;Do[d=Divisors[n][[i]];If[Mod[d,2]==0,s0=s0+1/d,s1=s1+1/d],{i,1,Length[Divisors[n]]}];If[3*s0-2*s1==1,Print[n]],{n,2,10^9,2}]
%o A257996 (PARI) siod(n) = sumdiv(n, d, (d%2)/d);
%o A257996 seod(n) = sumdiv(n, d, (1-d%2)/d);
%o A257996 isok(n) = 3*seod(n)-2*siod(n) == 1; \\ _Michel Marcus_, May 16 2015
%Y A257996 Cf. A000668.
%K A257996 nonn
%O A257996 1,1
%A A257996 _Michel Lagneau_, May 16 2015