This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A257996 #16 Sep 12 2017 08:59:38 %S A257996 120,1456,121024,2198352216064,576458003527499776 %N A257996 Let s0 and s1 be the sums of the reciprocals of the even and odd divisors of n, respectively. The sequence lists the numbers n such that 3*s0 - 2*s1 = 1. %C A257996 Let D0 = {d0(i)}, i = 1..p, the set of the p even divisors of a number n and D1 = {d1(n)}, j = 1..q the set of the q odd divisors of n. Then a(n) is the number such that 3*Sum_{i=1..p} 1/d0(i)- 2*Sum_{j=1..q} 1/d1(j) = 1. %C A257996 Property of the sequence: %C A257996 We observe that a(n) = 2^(k+1)*(2^k-1)*(2^(k+1) - 3) = (2*A000668(m) + 2)*A000668(m)*(2*A000668(m) - 1) where A000668(m) = 2^k - 1 is a Mersenne prime and (2*A000668(m)-1) = 2^(k+1)- 3 is also a prime number. %C A257996 The corresponding values of k are 2, 3, 5, 13, 19, ... and the corresponding values of m are 1, 2, 3, 5, 7, ... %C A257996 Generalization: %C A257996 It is possible to introduce general sequences of numbers such that a*s0 + b*s1 = c with very interesting properties for some integers a, b, c. %C A257996 Example 1: with (a, b, c) = (2, -1, 1) we find the sequence A064591 = 24, 112, 1984, 32512, ... (non-unitary perfect numbers). %C A257996 Example 2: with (a, b, c) = (2, -1, 0) we find the sequence A016825(n) = 2, 6, 10, 14, 18, 22, ... %C A257996 Example 3: with (a, b, c) = (1, 1, 2) we find the sequence A000396(n) = 6, 28, 496, 8128,... (perfect numbers). %C A257996 Example 4: with (a, b, c) = (4, -3, 1) we find the sequence 48, 224, 3968, 65024, ... = 2*A064591(n) = A000668(n)*2^p for some p where A000668 lists the Mersenne primes. %C A257996 Example 5: with (a, b, c) = (6, -5, 1) we find the sequence 240, 2912, 242048, ... which equals twice the sequence obtained with (a, b, c) = (3, -2, 1). %C A257996 Example 6: with (a, b, c) = (7, -6, 1) we find the sequence 2150, 13104, 24800, ... %e A257996 120 = 2^3*3*5 = (2*A000668(1)+2)* A000668(1)*(2*A000668(1)-1); %e A257996 1456 = 2^4*7*13 = (2*A000668(2)+2)* A000668(2)*(2*A000668(2)-1); %e A257996 121024 = 2^6*31*61 =(2*A000668(3)+2)* A000668(3)*(2*A000668(3)-1); %e A257996 2198352216064 = 2^14*8191*16381= (2*A000668(5)+2)*A000668(5)*(2*A000668(5)-1); %e A257996 576458003527499776 = 2^20*524287*1048573 = (2*A000668(7)+2)* A000668(7)*(2*A000668(7)-1). %p A257996 with(numtheory):nn:=100000: %p A257996 for n from 2 by 2 to nn do : %p A257996 x:=divisors(n):n0:=nops(x):s:=sum('x[i]', 'i'=1..n0): %p A257996 s0:=0:s1:=0: %p A257996 for k from 1 to n0 do: %p A257996 if irem(x[k],2)=0 %p A257996 then %p A257996 s0:=s0+1/x[k] %p A257996 else %p A257996 s1:=s1+1/x[k]: %p A257996 fi: %p A257996 od: %p A257996 if 3*s0-2*s1=1 then print(n):else fi:od: %t A257996 Do[s0=0;s1=0;Do[d=Divisors[n][[i]];If[Mod[d,2]==0,s0=s0+1/d,s1=s1+1/d],{i,1,Length[Divisors[n]]}];If[3*s0-2*s1==1,Print[n]],{n,2,10^9,2}] %o A257996 (PARI) siod(n) = sumdiv(n, d, (d%2)/d); %o A257996 seod(n) = sumdiv(n, d, (1-d%2)/d); %o A257996 isok(n) = 3*seod(n)-2*siod(n) == 1; \\ _Michel Marcus_, May 16 2015 %Y A257996 Cf. A000668. %K A257996 nonn %O A257996 1,1 %A A257996 _Michel Lagneau_, May 16 2015