cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257997 Numbers of the form (2^i)*(3^j) or (2^i)*(5^j) or (3^i)*(5^j).

This page as a plain text file.
%I A257997 #23 Sep 23 2020 03:04:03
%S A257997 1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,32,36,40,45,48,50,54,64,
%T A257997 72,75,80,81,96,100,108,125,128,135,144,160,162,192,200,216,225,243,
%U A257997 250,256,288,320,324,375,384,400,405,432,486,500,512,576,625,640
%N A257997 Numbers of the form (2^i)*(3^j) or (2^i)*(5^j) or (3^i)*(5^j).
%C A257997 Union of A003586, A003592 and A003593.
%C A257997 Subsequence of 5-smooth numbers (cf. A051037), having no more than two distinct prime factors: A006530(a(n)) <= 5; A001221(a(n)) <= 2.
%H A257997 Reinhard Zumkeller, <a href="/A257997/b257997.txt">Table of n, a(n) for n = 1..10000</a>
%H A257997 Vaclav Kotesovec, <a href="/A257997/a257997_1.jpg">Graph - the asymptotic ratio (80000000 terms)</a>
%F A257997 a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n/log(30))). - _Vaclav Kotesovec_, Sep 22 2020
%F A257997 Sum_{n>=1} 1/a(n) = 29/8. - _Amiram Eldar_, Sep 23 2020
%e A257997 . ----+------+---------     ----+------+-----------
%e A257997 .   1 |   1  |  1            16 |  25  |  5^2
%e A257997 .   2 |   2  |  2            17 |  27  |  3^3
%e A257997 .   3 |   3  |  3            18 |  32  |  2^5
%e A257997 .   4 |   4  |  2^2          19 |  36  |  2^2 * 3^2
%e A257997 .   5 |   5  |  5            20 |  40  |  2^3 * 5
%e A257997 .   6 |   6  |  2 * 3        21 |  45  |  3^2 * 5
%e A257997 .   7 |   8  |  2^3          22 |  48  |  2^4 * 3
%e A257997 .   8 |   9  |  3^2          23 |  50  |  2 * 5^2
%e A257997 .   9 |  10  |  2 * 5        24 |  54  |  2 * 3^3
%e A257997 .  10 |  12  |  2^2 * 3      25 |  64  |  2^6
%e A257997 .  11 |  15  |  3 * 5        26 |  72  |  2^3 * 3^2
%e A257997 .  12 |  16  |  2^4          27 |  75  |  3 * 5^2
%e A257997 .  13 |  18  |  2 * 3^2      28 |  80  |  2^4 * 5
%e A257997 .  14 |  20  |  2^2 * 5      29 |  81  |  3^4
%e A257997 .  15 |  24  |  2^3 * 3      30 |  96  |  2^5 * 3
%t A257997 n = 1000; Join[Table[2^i*3^j, {i, 0, Log[2, n]}, {j, 0, Log[3, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}], Table[2^i*5^j, {i, 0, Log[2, n]}, {j, 0, Log[5, n/2^i]}]] // Flatten // Union (* _Amiram Eldar_, Sep 23 2020 *)
%o A257997 (Haskell)
%o A257997 import Data.List.Ordered (unionAll)
%o A257997 a257997 n = a257997_list !! (n-1)
%o A257997 a257997_list = unionAll [a003586_list, a003592_list, a003593_list]
%Y A257997 Cf. A003586, A003592, A003593, A051037, A006530, A001221, A258023 (subsequence).
%Y A257997 Cf. A337800, A337801.
%K A257997 nonn,easy
%O A257997 1,2
%A A257997 _Reinhard Zumkeller_, May 16 2015