This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258026 #20 Feb 28 2024 10:21:11 %S A258026 4,6,9,11,12,16,18,19,21,24,25,27,30,32,34,37,40,42,44,47,48,51,53,56, %T A258026 58,59,62,63,66,68,72,74,77,80,82,84,87,88,91,92,94,97,99,101,103,106, %U A258026 108,111,112,114,115,119,121,125,127,128,130,132,133,135,137 %N A258026 Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) < 0. %C A258026 Positions of strict descents in the sequence of differences between primes. Partial sums of A333215. - _Gus Wiseman_, Mar 24 2020 %H A258026 Clark Kimberling, <a href="/A258026/b258026.txt">Table of n, a(n) for n = 1..1000</a> %H A258026 Wikipedia, <a href="https://en.wikipedia.org/wiki/Longest_increasing_subsequence">Longest increasing subsequence</a> %e A258026 The prime gaps split into the following maximal weakly increasing subsequences: (1,2,2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6,6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ... Then a(n) is the n-th partial sum of the lengths of these subsequences. - _Gus Wiseman_, Mar 24 2020 %t A258026 u = Table[Sign[Prime[n+2] - 2 Prime[n+1] + Prime[n]], {n, 1, 200}]; %t A258026 Flatten[Position[u, 0]] (* A064113 *) %t A258026 Flatten[Position[u, 1]] (* A258025 *) %t A258026 Flatten[Position[u, -1]] (* A258026 *) %t A258026 Accumulate[Length/@Split[Differences[Array[Prime,100]],LessEqual]]//Most (* _Gus Wiseman_, Mar 24 2020 *) %o A258026 (Python) %o A258026 from itertools import count, islice %o A258026 from sympy import prime, nextprime %o A258026 def A258026_gen(startvalue=1): # generator of terms >= startvalue %o A258026 c = max(startvalue,1) %o A258026 p = prime(c) %o A258026 q = nextprime(p) %o A258026 r = nextprime(q) %o A258026 for k in count(c): %o A258026 if p+r<(q<<1): %o A258026 yield k %o A258026 p, q, r = q, r, nextprime(r) %o A258026 A258026_list = list(islice(A258026_gen(),20)) # _Chai Wah Wu_, Feb 27 2024 %Y A258026 Partition of the positive integers: A064113, A258025, A258026; %Y A258026 Corresponding partition of the primes: A063535, A063535, A147812. %Y A258026 Adjacent terms differing by 1 correspond to strong prime quartets A054804. %Y A258026 The version for the Kolakoski sequence is A156242. %Y A258026 First differences are A333215 (if the first term is 0). %Y A258026 The version for strict ascents is A258025. %Y A258026 The version for weak ascents is A333230. %Y A258026 The version for weak descents is A333231. %Y A258026 Prime gaps are A001223. %Y A258026 Positions of adjacent equal prime gaps are A064113. %Y A258026 Weakly increasing runs of compositions in standard order are A124766. %Y A258026 Strictly decreasing runs of compositions in standard order are A124769. %Y A258026 Cf. A000040, A000720, A001221, A036263, A054819, A084758, A124765, A124768, A333212, A333213, A333214, A333256. %K A258026 nonn,easy %O A258026 1,1 %A A258026 _Clark Kimberling_, Jun 05 2015