A258036 Numbers k such that D(prime(k), k-1) < 0, where D( * , k-1) = (k-1)-st difference.
4, 6, 8, 10, 12, 14, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36, 38, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 101, 103, 105, 107, 109, 111, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1
Examples
D(prime(2), 1) = 3 - 2 > 0; D(prime(3), 2) = 5 - 2*3 + 2 > 0; D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0, so a(1) = 4;
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
u = Table[Prime[Range[k]], {k, 1, 1000}]; v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]]; w1 = Flatten[Position[v, -1]] (* A258036 *) w2 = Flatten[Position[v, 1]] (* A258037 *) Prime[w1] (* A258038 *) Prime[w2] (* A258039 *)
-
PARI
is(k) = {my(p=primes(k));sum(i=0,k-1,(-1)^i*p[k-i]*binomial(k-1,i))<0} \\ Jason Yuen, Nov 13 2024
Formula
D(prime(k), k-1) = Sum_{i=0..k-1} (-1)^i*prime(k-i)*binomial(k-1,i). [corrected by Jason Yuen, Nov 13 2024]
Comments