cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258038 Numbers prime(k) such that D(prime(k), k-1) < 0, where D( * , k-1) = (k-1)-st difference.

Original entry on oeis.org

7, 13, 19, 29, 37, 43, 59, 67, 73, 83, 97, 107, 113, 131, 139, 151, 163, 179, 191, 197, 211, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 523, 547, 563, 571, 587, 599, 607
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2015

Keywords

Comments

Partition of the positive integers: A258036, A258037;
Corresponding partition of the primes: A258038, A258039.

Examples

			D(prime(2), 1) = 3 - 2 > 0;
D(prime(3), 2) = 5 - 2*3 + 2 > 0;
D(prime(4), 3) = 7 - 3*5 + 3*3 - 2 < 0, so a(1) = prime(4) = 7;
		

Crossrefs

Programs

  • Mathematica
    u = Table[Prime[Range[k]], {k, 1, 1000}];
    v = Flatten[Table[Sign[Differences[u[[k]], k - 1]], {k, 1, 100}]];
    w1 = Flatten[Position[v, -1]] (* A258036 *)
    w2 = Flatten[Position[v, 1]]  (* A258037 *)
    p1 = Prime[w1]  (* A258038 *)
    p2 = Prime[w2]  (* A258039 *)

Formula

D(prime(k), k-1) = Sum_{i=0..k-1} (-1)^i*prime(k-i)*binomial(k-1,i). [corrected by Jason Yuen, Nov 13 2024]
a(n) = prime(A258036(n)). - Jason Yuen, Nov 13 2024