This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258060 #47 May 22 2025 10:21:43 %S A258060 49,169,361,1225,1444,1681,3249,4225,4900,15625,16900,36100,42025, %T A258060 49729,64009,81225,93025,122500,142129,144400,168100,225625,237169, %U A258060 324900,414736,422500,490000,519841,819025,950625,970225,1024144,1442401,1562500,1600225,1690000,1692601,2079364,2304324 %N A258060 Squares, without multiplicity, that are the concatenation of two integers (without leading zeros) the product of which is also a square. %C A258060 Squares that can be split up in more than one way, e.g., 4950625 with sqrt(4 * 950625) = 1950 and sqrt(49 * 50625) = 1575, appear only once. %C A258060 Squares that are members of this sequence in more than one way: 4950625, 495062500, 49506250000, 4950625000000, ..., . - _Robert G. Wilson v_, Aug 14 2015 %H A258060 Robert G. Wilson v, <a href="/A258060/b258060.txt">Table of n, a(n) for n = 1..1386</a> (first 200 terms from Reiner Moewald) %e A258060 169 = 13^2 can be split up into 16 and 9 and 16*9 = 144, a square. %p A258060 p:= proc(k,n) local t; t:= n mod 10^k; t >= 10^(k-1) and issqr(t*(n-t)/10^k) end proc: %p A258060 filter:= n -> ormap(p, [$1..ilog10(n)], n): %p A258060 select(filter, [seq(i^2, i=1..10^4)]); # _Robert Israel_, Sep 22 2015 %t A258060 f[n_] := Block[{idn = IntegerDigits@ n, c = 0, k = 1, lmt = Floor[1 + Log10@ n]}, While[k < lmt, m = Mod[n, 10^(lmt - k)]; If[ IntegerQ@ Sqrt[ FromDigits[ Take[idn, {1, k}]] m] && m > 0 && IntegerDigits[m] == Take[idn, {k + 1, -1}], c++]; k++]; c]; Select[ Range[1700]^2, f@# > 0 &] (* _Robert G. Wilson v_, Aug 13 2015 *) %o A258060 (Python) %o A258060 import math %o A258060 list =[] %o A258060 for i in range(1,100000): %o A258060 a = i*i %o A258060 b = str(a) %o A258060 l = len(b) %o A258060 for j in range(1, l): %o A258060 a_1 = b[:j] %o A258060 a_2 = b[j:] %o A258060 c = int(a_1)* int(a_2) %o A258060 sqrt_c = int(math.sqrt(int(c))) %o A258060 if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0): %o A258060 if not a in list: %o A258060 list.append(a) %o A258060 list.append(a) %o A258060 print(list) %o A258060 (PARI) isok(n) = {if (issquare(n), len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n%10^k; if (na && nb && (eval(Str(na,nb))==n) && issquare(na*nb), return (1));););} \\ _Michel Marcus_, Oct 09 2015 %Y A258060 Subsequence of A039686. %K A258060 nonn,base %O A258060 1,1 %A A258060 _Reiner Moewald_, Jul 26 2015