cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258060 Squares, without multiplicity, that are the concatenation of two integers (without leading zeros) the product of which is also a square.

This page as a plain text file.
%I A258060 #47 May 22 2025 10:21:43
%S A258060 49,169,361,1225,1444,1681,3249,4225,4900,15625,16900,36100,42025,
%T A258060 49729,64009,81225,93025,122500,142129,144400,168100,225625,237169,
%U A258060 324900,414736,422500,490000,519841,819025,950625,970225,1024144,1442401,1562500,1600225,1690000,1692601,2079364,2304324
%N A258060 Squares, without multiplicity, that are the concatenation of two integers (without leading zeros) the product of which is also a square.
%C A258060 Squares that can be split up in more than one way, e.g., 4950625 with sqrt(4 * 950625) = 1950 and sqrt(49 * 50625) = 1575, appear only once.
%C A258060 Squares that are members of this sequence in more than one way: 4950625, 495062500, 49506250000, 4950625000000, ..., . - _Robert G. Wilson v_, Aug 14 2015
%H A258060 Robert G. Wilson v, <a href="/A258060/b258060.txt">Table of n, a(n) for n = 1..1386</a> (first 200 terms from Reiner Moewald)
%e A258060 169 = 13^2 can be split up into 16 and 9 and 16*9 = 144, a square.
%p A258060 p:= proc(k,n) local t; t:= n mod 10^k; t >= 10^(k-1) and issqr(t*(n-t)/10^k) end proc:
%p A258060 filter:= n -> ormap(p, [$1..ilog10(n)], n):
%p A258060 select(filter, [seq(i^2, i=1..10^4)]); # _Robert Israel_, Sep 22 2015
%t A258060 f[n_] := Block[{idn = IntegerDigits@ n, c = 0, k = 1, lmt = Floor[1 + Log10@ n]}, While[k < lmt, m = Mod[n, 10^(lmt - k)]; If[ IntegerQ@ Sqrt[ FromDigits[ Take[idn, {1, k}]] m] && m > 0 && IntegerDigits[m] == Take[idn, {k + 1, -1}], c++]; k++]; c]; Select[ Range[1700]^2, f@# > 0 &] (* _Robert G. Wilson v_, Aug 13 2015 *)
%o A258060 (Python)
%o A258060 import math
%o A258060 list =[]
%o A258060 for i in range(1,100000):
%o A258060    a = i*i
%o A258060    b = str(a)
%o A258060    l = len(b)
%o A258060    for j in range(1, l):
%o A258060       a_1 = b[:j]
%o A258060       a_2 = b[j:]
%o A258060       c = int(a_1)* int(a_2)
%o A258060       sqrt_c = int(math.sqrt(int(c)))
%o A258060       if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
%o A258060          if not a in list:
%o A258060             list.append(a)
%o A258060          list.append(a)
%o A258060 print(list)
%o A258060 (PARI) isok(n) = {if (issquare(n), len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n%10^k; if (na && nb && (eval(Str(na,nb))==n) && issquare(na*nb), return (1));););} \\ _Michel Marcus_, Oct 09 2015
%Y A258060 Subsequence of A039686.
%K A258060 nonn,base
%O A258060 1,1
%A A258060 _Reiner Moewald_, Jul 26 2015