cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258068 Nonnegative integers that can be computed using exactly seven 7's and the four basic arithmetic operations {+, -, *, /}.

This page as a plain text file.
%I A258068 #15 Nov 26 2018 14:45:56
%S A258068 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
%T A258068 26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,
%U A258068 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,69,70,71
%N A258068 Nonnegative integers that can be computed using exactly seven 7's and the four basic arithmetic operations {+, -, *, /}.
%C A258068 The smallest non-computable number here is 38. The largest computable number here is 7^7 = 823543.
%H A258068 Alois P. Heinz, <a href="/A258068/b258068.txt">Table of n, a(n) for n = 1..536</a>
%p A258068 f:= proc(n) f(n):= `if`(n=1, {7}, {seq(seq(seq([x+y, x-y, x*y,
%p A258068       `if`(y=0, [][], x/y)][], y=f(n-j)), x=f(j)), j=1..n-1)})
%p A258068     end:
%p A258068 sort([select(z->z>=0 and is(z, integer), f(7))[]])[];
%o A258068 (PARI) A258068(n=7, S=Vec([[n]], n))={for(n=2, n, S[n]=Set(concat(vector(n\2, k, Set(concat([Set(concat([[T+U, T-U, U-T, if(U, T/U), if(T, U/T), T*U] | T <- S[n-k]])) | U <- S[k]])))))); select(t->t>=0 && type(t)=="t_INT", S[n])} \\ A258068() yields this sequence, use optional arg to compute variants. - _M. F. Hasler_, Nov 24 2018
%Y A258068 Cf. A171826, A171827, A171828, A171829, A258069, A258070, A258071.
%Y A258068 Cf. A182002, A258097.
%K A258068 nonn,fini,full
%O A258068 1,3
%A A258068 _Alois P. Heinz_, May 18 2015