cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258070 Nonnegative integers that can be computed using exactly nine 9's and the four basic arithmetic operations {+, -, *, /}.

This page as a plain text file.
%I A258070 #13 Nov 26 2018 14:43:51
%S A258070 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
%T A258070 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
%U A258070 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67
%N A258070 Nonnegative integers that can be computed using exactly nine 9's and the four basic arithmetic operations {+, -, *, /}.
%C A258070 The smallest non-computable number here is 195. The largest computable number here is 9^9 = 387420489.
%H A258070 Alois P. Heinz, <a href="/A258070/b258070.txt">Table of n, a(n) for n = 1..4769</a>
%p A258070 f:= proc(n) f(n):= `if`(n=1, {9}, {seq(seq(seq([x+y, x-y, x*y,
%p A258070       `if`(y=0, [][], x/y)][], y=f(n-j)), x=f(j)), j=1..n-1)})
%p A258070     end:
%p A258070 sort([select(z->z>=0 and is(z, integer), f(9))[]])[];
%o A258070 (PARI) A258070(n=9, S=Vec([[n]], n))={for(n=2, n, S[n]=Set(concat(vector(n\2, k, Set(concat([Set(concat([[T+U, T-U, U-T, if(U, T/U), if(T, U/T), T*U] | T <- S[n-k]])) | U <- S[k]])))))); select(t->t>=0 && type(t)=="t_INT", S[n])} \\ Requires at least 30 MB stack. (Use allocatemem()). A258070() yields this sequence, use optional arg to compute variants. - _M. F. Hasler_, Nov 26 2018
%Y A258070 Cf. A171826, A171827, A171828, A171829, A258068, A258069, A258071.
%Y A258070 Cf. A182002, A258097.
%K A258070 nonn,fini,full
%O A258070 1,3
%A A258070 _Alois P. Heinz_, May 18 2015