This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258082 #23 May 31 2015 05:59:23 %S A258082 240,29790,24024 %N A258082 Smallest magic constant of most-perfect magic squares of order 2n composed of distinct prime numbers. %C A258082 A magic square of order 2n is most-perfect if the following two conditions hold: (i) every 2 x 2 subsquare (including wrap-around) sum to 2T; and (ii) any pair of elements at distance n along a diagonal or a skew diagonal sum to T, where T= S/n, S is the magic constant. %C A258082 All most-perfect magic squares are pandiagonal. %C A258082 All pandiagonal magic squares of order 4 are most-perfect (cf. A191533). %H A258082 N. Makarova, <a href="http://www.primepuzzles.net/puzzles/puzz_671.htm">Puzzle 671: Most Perfect Magic Squares</a>, Prime Puzzles & Problems. %H A258082 Wikipedia, <a href="http://en.wikipedia.org/wiki/Most-perfect_magic_square">Most-perfect magic square</a> %e A258082 a(3)=29790 corresponds to the following most-perfect magic square of order 6: %e A258082 149 9161 2309 6701 2609 8861 %e A258082 9067 1483 6907 3943 6607 1783 %e A258082 4139 5171 6299 2711 6599 4871 %e A258082 3229 7321 1069 9781 769 7621 %e A258082 5987 3323 8147 863 8447 3023 %e A258082 7219 3331 5059 5791 4759 3631 %e A258082 a(4)=24024 corresponds to the following most-perfect magic square of order 8: %e A258082 19 5923 1019 4423 4793 1277 3793 2777 %e A258082 4877 1193 3877 2693 103 5839 1103 4339 %e A258082 499 5443 1499 3943 5273 797 4273 2297 %e A258082 5297 773 4297 2273 523 5419 1523 3919 %e A258082 1213 4729 2213 3229 5987 83 4987 1583 %e A258082 5903 167 4903 1667 1129 4813 2129 3313 %e A258082 733 5209 1733 3709 5507 563 4507 2063 %e A258082 5483 587 4483 2087 709 5233 1709 3733 %Y A258082 Cf. A191533. %K A258082 bref,nonn,more %O A258082 2,1 %A A258082 _Natalia Makarova_, May 23 2015