This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258097 #17 Aug 29 2021 12:01:41 %S A258097 1,3,9,26,68,198,536,1660,4769,15945,46240,165732,488268,1848866, %T A258097 5852344 %N A258097 Number of nonnegative integers that can be computed using exactly n n's and the four basic arithmetic operations {+, -, *, /}. %p A258097 a:= proc(n) option remember; local f; f:= %p A258097 proc(m) option remember; `if`(m=1, {n}, { %p A258097 seq(seq(seq([x+y, x-y, x*y, `if`(y=0, [][], x/y) %p A258097 ][], y=f(m-j)), x=f(j)), j=1..m-1)}) %p A258097 end; forget(f); %p A258097 nops([select(z->z>=0 and is(z, integer), f(n))[]]) %p A258097 end: %p A258097 seq(a(n), n=1..9); %t A258097 a[n_] := a[n] = Module[{f}, f[m_] := f[m] = If[m == 1, {n}, %t A258097 Union@ Flatten@ Table[Table[Table[{x + y, x - y, x*y, %t A258097 If[y == 0, Nothing, x/y]}, {y, f[m-j]}], {x, f[j]}], {j, m-1}]]; %t A258097 Length[Select[f[n], # >= 0 && IntegerQ[#]&]]]; %t A258097 Table[a[n], {n, 1, 9}] (* _Jean-François Alcover_, Aug 29 2021, after _Alois P. Heinz_ *) %o A258097 (Python) %o A258097 from fractions import Fraction %o A258097 from functools import lru_cache %o A258097 def a(n): %o A258097 @lru_cache() %o A258097 def f(m): %o A258097 if m == 1: return {Fraction(n, 1)} %o A258097 out = set() %o A258097 for j in range(1, m): %o A258097 for x in f(j): %o A258097 for y in f(m-j): %o A258097 out.update([x + y, x - y, x * y]) %o A258097 if y: out.add(Fraction(x, y)) %o A258097 return list(out) %o A258097 return sum(num >= 0 and num.denominator == 1 for num in f(n)) %o A258097 print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Aug 29 2021 after _Alois P. Heinz_ %Y A258097 Cf. A171826, A171827, A171828, A171829, A258068, A258069, A258070, A258071. %K A258097 nonn,more %O A258097 1,2 %A A258097 _Alois P. Heinz_, May 19 2015 %E A258097 a(13)-a(14) from _Giovanni Resta_, May 20 2015 %E A258097 a(15) from _Michael S. Branicky_, Aug 29 2021