cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A258106 Number x such that sigma(x) = usigma(x) + (-1)sigma(x), where sigma(x) is the sum of divisors of x (A000203), usigma(x) is the sum of unitary divisors of x (A034448) and (-1)sigma(x) is defined in A049060.

Original entry on oeis.org

1998, 3876, 4524, 10062, 21582, 45220, 52780, 85428, 125976, 226100, 263900, 271092, 511428, 597012, 602946, 839106, 1033974, 1130500, 1274724, 1280532, 1319500, 1435764, 1469720, 1575860, 1810926, 1895706, 2171364, 2550636, 3162740, 4083366, 4766034, 5652500
Offset: 1

Views

Author

Paolo P. Lava, May 20 2015

Keywords

Comments

The definition implies that the terms of the sequence could be defined as the numbers x such that (-1)sigma(x) is equal to the sum of the non-unitary divisors of x.

Examples

			usigma(1998) = 3192, (-1)sigma(1998) = 1368 and 3191 + 1368 = 4560 = sigma(1998);
usigma(3876) = 7200, (-1)sigma(3876) = 2880 and 7200 + 2880 = 10080 = sigma(3876);
usigma(4524) = 8400, (-1)sigma(4524) = 3360 and 8400 + 3360 = 11760 = sigma(4524); etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,i,k,n; a:=0; b:=0;
    for n from 1 to q do a:=divisors(n); d:=0; for k from 1 to nops(a) do
    if gcd(a[k],n/a[k])>1 then d:=d+a[k]; fi; od; a:=ifactors(n)[2]; b:=1;
    for i from 1 to nops(a) do b:=b*(-1+sum(a[i][1]^j,j=1..a[i][2])); od;
    if b=d then print(n); fi; od; end: P(10^9);
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times@@((p^(e+1)-1)/(p-1)) == Times@@(p^e+1) + Times@@((p^(e+1)-2*p+1)/(p-1))]; Select[Range[2, 100000], aQ] (* Amiram Eldar, Jun 25 2019 *)

Extensions

More terms from Amiram Eldar, Jun 25 2019
Showing 1-1 of 1 results.