This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258103 #50 Oct 05 2024 21:05:58 %S A258103 0,0,1,0,1,3,4,26,87,47,87,0,547,1303,3402,0,24192,187562 %N A258103 Number of pandigital squares (containing each digit exactly once) in base n. %C A258103 For n = 18, the smallest and largest pandigital squares are 2200667320658951859841 and 39207739576969100808801. For n = 19, they are 104753558229986901966129 and 1972312183619434816475625. For n = 20, they are 5272187100814113874556176 and 104566626183621314286288961. - _Chai Wah Wu_, May 20 2015 %C A258103 When n is even, (n-1) is a factor of the pandigital squares. When n is odd, (n-1)/2 is a factor with the remaining factors being odd. Therefore, when n is odd and (n-1)/2 has an odd number of 2s as prime factors there are no pandigital squares in base n (e.g. 5, 13, 17 and 21). - _Adam J.T. Partridge_, May 21 2015 %C A258103 If n is odd and (n-1)/2 has an odd 2-adic valuation, then there are no squares in base n using all the digits from 1 to n-1 once, or all the digits from 0 to n-2 once or all the digits from 1 to n-2 once. This can be proved using the same argument as in the linked blogposts. - _Chai Wah Wu_, Feb 25 2024 %H A258103 A. J. T. Partridge, <a href="http://chalkdustmagazine.com/blog/pandigital-square-numbers/">Why there are no pandigital squares in base 13</a> %H A258103 Chai Wah Wu, <a href="https://accidentaldesultorycogitations.blogspot.com/2024/02/square-pandigital-numbers.html">Square pandigital numbers</a> %H A258103 Chai Wah Wu, <a href="https://arxiv.org/abs/2403.20304">Pandigital and penholodigital numbers</a>, arXiv:2403.20304 [math.GM], 2024. See p. 2. %e A258103 For n=4 there is one pandigital square, 3201_4 = 225 = 15^2. %e A258103 For n=6 there is one pandigital square, 452013_6 = 38025 = 195^2. %e A258103 For n=10 there are 87 pandigital squares (A036745). %e A258103 There are no pandigital squares in bases 2, 3, 5 or 13. %e A258103 Hexadecimal has 3402 pandigital squares, the largest is FED5B39A42706C81. %o A258103 (Python) %o A258103 from gmpy2 import isqrt, mpz, digits %o A258103 def A258103(n): # requires 2 <= n <= 62 %o A258103 c, sm, sq = 0, mpz(''.join([digits(i, n) for i in range(n-1, -1, -1)]), n), mpz(''.join(['1', '0']+[digits(i, n) for i in range(2, n)]), n) %o A258103 m = isqrt(sq) %o A258103 sq = m*m %o A258103 m = 2*m+1 %o A258103 while sq <= sm: %o A258103 if len(set(digits(sq, n))) == n: %o A258103 c += 1 %o A258103 sq += m %o A258103 m += 2 %o A258103 return c # _Chai Wah Wu_, May 20 2015 %o A258103 (PARI) a(n) = if(n%2==1 && valuation(n-1,2)%2==0, 0, my(lim=sqrtint(n^n - (n^n-n)/(n-1)^2), count=0); for(m=sqrtint((n^n-n)/(n-1)^2 + n^(n-2)*(n-1) - 1), lim, if(#Set(digits(m^2,n))==n, count++)); count) \\ _Jianing Song_, Feb 23 2024. Note that the searching range for m is [sqrt(A049363(n)), sqrt(A062813(n))] %Y A258103 Cf. A036745, A054038, A071519. %K A258103 base,nonn,more %O A258103 2,6 %A A258103 _Adam J.T. Partridge_, May 20 2015 %E A258103 a(17)-a(19) from _Giovanni Resta_, May 20 2015