cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258109 Number of balanced parenthesis expressions of length 2n and depth 3.

This page as a plain text file.
%I A258109 #70 Oct 27 2023 21:47:14
%S A258109 1,5,18,57,169,482,1341,3669,9922,26609,70929,188226,497845,1313501,
%T A258109 3459042,9096393,23895673,62721698,164531565,431397285,1130708866,
%U A258109 2962826465,7761964833,20331456642,53249182309,139449644717,365166860706,956185155129,2503657040137
%N A258109 Number of balanced parenthesis expressions of length 2n and depth 3.
%C A258109 a(n) is the number of Dyck paths of length 2n and height 3. For example, a(3) = 1 because there is only one such Dyck path which is UUUDDD. - _Ran Pan_, Sep 26 2015
%C A258109 a(n) is the number of rooted plane trees with n+1 nodes and height 3 (see example for correspondence). - _Gheorghe Coserea_, Feb 04 2016
%D A258109 S. S. Skiena and M. A. Revilla, Programming Challenges: The Programming Contest Training Manual, Springer, 2006, page 140.
%H A258109 Alois P. Heinz, <a href="/A258109/b258109.txt">Table of n, a(n) for n = 3..1000</a> (first 40 terms from Gheorghe Coserea)
%H A258109 Kyu-Hwan Lee, Se-jin Oh, <a href="http://arxiv.org/abs/1601.06685">Catalan triangle numbers and binomial coefficients</a>, arXiv:1601.06685 [math.CO], 2016.
%H A258109 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,2).
%F A258109 a(n) = 2^(n-3) + 3 * a(n-1) - a(n-2).
%F A258109 a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>5. - _Colin Barker_, May 24 2015
%F A258109 G.f.: -x^3 / ((2*x-1)*(x^2-3*x+1)). - _Colin Barker_, May 24 2015
%F A258109 a(n) = A000045(2n-1) - A000079(n-1). - _Gheorghe Coserea_, Feb 04 2016
%F A258109 a(n) = 2^(-1-n)*(-5*4^n - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))) / 5. - _Colin Barker_, Jun 05 2017
%F A258109 a(n) = Sum_{i=1..n-1} A061667(i)*(n-1-i) - _Tim C. Flowers_, May 16 2018
%e A258109 For n=4, the a(4) = 5 solutions are
%e A258109                 /\       /\
%e A258109                /  \        \
%e A258109 LRLLLRRR    /\/    \        \
%e A258109 ................................
%e A258109                 /\        |
%e A258109              /\/  \      / \
%e A258109 LLRLLRRR    /      \        \
%e A258109 ................................
%e A258109               /\/\        |
%e A258109              /    \       |
%e A258109 LLLRLRRR    /      \     / \
%e A258109 ................................
%e A258109               /\          |
%e A258109              /  \/\      / \
%e A258109 LLLRRLRR    /      \    /
%e A258109 ................................
%e A258109               /\          /\
%e A258109              /  \        /
%e A258109 LLLRRRLR    /    \/\    /
%p A258109 a:= proc(n) option remember; `if`(n<3, 0,
%p A258109       `if`(n=3, 1, 2^(n-3) +3*a(n-1) -a(n-2)))
%p A258109     end:
%p A258109 seq(a(n), n=3..30);  # _Alois P. Heinz_, May 20 2015
%t A258109 Join[{1, 5}, LinearRecurrence[{5, -7, 2}, {18, 57, 169}, 30]] (* _Vincenzo Librandi_, Sep 26 2015 *)
%o A258109 (C)
%o A258109 typedef long long unsigned Integer;
%o A258109 Integer a(int n)
%o A258109 {
%o A258109     int i;
%o A258109     Integer pow2 = 1, a[3] = {0};
%o A258109     for (i = 3; i <= n; ++i) {
%o A258109         a[ i%3 ] = pow2 + 3 * a[ (i-1)%3 ] - a[ (i-2)%3 ];
%o A258109         pow2 = pow2 * 2;
%o A258109     }
%o A258109     return a[ (i-1)%3 ];
%o A258109 }
%o A258109 (PARI) Vec(-x^3/((2*x-1)*(x^2-3*x+1)) + O(x^100)) \\ _Colin Barker_, May 24 2015
%o A258109 (Magma) I:=[1,5,18,57,169]; [n le 5 select I[n] else 5*Self(n-1) - 7*Self(n-2) + 2*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Sep 26 2015
%o A258109 (PARI) a(n) = fibonacci(2*n-1) - 2^(n-1)  \\ _Gheorghe Coserea_, Feb 04 2016
%Y A258109 Column k=3 of A080936.
%Y A258109 Column k=2 of A287213.
%Y A258109 Cf. A000045, A000079, A262600.
%K A258109 nonn,walk,easy
%O A258109 3,2
%A A258109 _Gheorghe Coserea_, May 20 2015