cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258116 The Heinz numbers in increasing order of the partitions into distinct odd parts.

This page as a plain text file.
%I A258116 #18 Feb 14 2020 16:37:27
%S A258116 1,2,5,10,11,17,22,23,31,34,41,46,47,55,59,62,67,73,82,83,85,94,97,
%T A258116 103,109,110,115,118,127,134,137,146,149,155,157,166,167,170,179,187,
%U A258116 191,194,197,205,206,211,218,227,230,233,235,241,253,254,257,269,274,277,283,295,298,307,310,313,314,331,334,335,341,347
%N A258116 The Heinz numbers in increasing order of the partitions into distinct odd parts.
%C A258116 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, the Heinz number of the partition [1, 1, 2, 4, 10] is 2*2*3*7*29 = 2436.
%C A258116 In the Maple program the subprogram B yields the partition with Heinz number n.
%C A258116 More terms are obtained if one replaces the 350 in the Maple program by a larger number.
%D A258116 G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
%D A258116 G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
%H A258116 Alois P. Heinz, <a href="/A258116/b258116.txt">Table of n, a(n) for n = 1..10000</a>
%e A258116 170 is in the sequence because it is the Heinz number of the partition [1,3,7]; indeed, (1st prime)*(3rd prime)*(7th prime) = 2*5*17 = 170.
%p A258116 with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DO := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), odd) = {true}) then DO := `union`(DO, {q}) else  end if end do: DO;
%p A258116 # second Maple program:
%p A258116 a:= proc(n) option remember; local k;
%p A258116       for k from 1+`if`(n=1, 0, a(n-1)) do
%p A258116         if not false in map(i-> i[2]=1 and numtheory
%p A258116         [pi](i[1])::odd, ifactors(k)[2]) then break fi
%p A258116       od; k
%p A258116     end:
%p A258116 seq(a(n), n=1..100);  # _Alois P. Heinz_, May 10 2016
%t A258116 a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n-1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && OddQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Join[{1}, Array[a, 100]] (* _Jean-François Alcover_, Dec 10 2016 after _Alois P. Heinz_ *)
%Y A258116 Cf. A215366, A258117.
%K A258116 nonn
%O A258116 1,2
%A A258116 _Emeric Deutsch_, May 20 2015
%E A258116 a(1)=1 inserted by _Alois P. Heinz_, May 10 2016