cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258117 The Heinz numbers in increasing order of the partitions into distinct even parts.

This page as a plain text file.
%I A258117 #17 Feb 14 2020 16:38:54
%S A258117 1,3,7,13,19,21,29,37,39,43,53,57,61,71,79,87,89,91,101,107,111,113,
%T A258117 129,131,133,139,151,159,163,173,181,183,193,199,203,213,223,229,237,
%U A258117 239,247,251,259,263,267,271,273,281,293,301,303,311,317,321,337,339,349
%N A258117 The Heinz numbers in increasing order of the partitions into distinct even parts.
%C A258117 We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, the Heinz number of the partition [1, 1, 2, 4, 10] is 2*2*3*7*29 = 2436.
%C A258117 In the Maple program the subprogram B yields the partition with Heinz number n.
%C A258117 More terms are obtained if one replaces the 350 in the Maple program by a larger number.
%D A258117 G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
%D A258117 G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
%H A258117 Alois P. Heinz, <a href="/A258117/b258117.txt">Table of n, a(n) for n = 1..10000</a>
%e A258117 213 is in the sequence because it is the Heinz number of the partition [2,20]; indeed, (2nd prime)*(20th prime) = 3*71 = 213.
%p A258117 with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DE := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), even) = {true}) then DE := `union`(DE, {q}) else  end if end do: DE;
%p A258117 # second Maple program:
%p A258117 a:= proc(n) option remember; local k;
%p A258117       for k from 1+`if`(n=1, 0, a(n-1)) do
%p A258117         if not false in map(i-> i[2]=1 and numtheory
%p A258117         [pi](i[1])::even, ifactors(k)[2]) then break fi
%p A258117       od; k
%p A258117     end:
%p A258117 seq(a(n), n=1..100);  # _Alois P. Heinz_, May 10 2016
%t A258117 a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && EvenQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Array[a, 100] (* _Jean-François Alcover_, Dec 12 2016 after _Alois P. Heinz_ *)
%Y A258117 Cf. A215366, A258116.
%K A258117 nonn
%O A258117 1,2
%A A258117 _Emeric Deutsch_, May 20 2015
%E A258117 a(1)=1 inserted by _Alois P. Heinz_, May 10 2016