cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258143 Row sums of A257241, Stifel's version of the arithmetical triangle.

This page as a plain text file.
%I A258143 #30 Nov 14 2024 08:22:43
%S A258143 1,2,6,10,25,41,98,162,381,637,1485,2509,5811,9907,22818,39202,89845,
%T A258143 155381,354521,616665,1401291,2449867,5546381,9740685,21977515,
%U A258143 38754731,87167163,154276027,345994215,614429671,1374282018,2448023842,5461770405,9756737701,21717436833
%N A258143 Row sums of A257241, Stifel's version of the arithmetical triangle.
%C A258143 a(n) is the number of nonempty subsets of {1,2,...,n} that contain either more odd than even numbers or the same number of odd and even numbers.  For example, for n=4, a(4)=10 and the 10 subsets are {1}, {3}, {1,3}, {1,2,3}, {1,3,4}; {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3,4}. - _Enrique Navarrete_, Dec 16 2019
%H A258143 Reinhard Zumkeller, <a href="/A258143/b258143.txt">Table of n, a(n) for n = 1..1000</a>
%F A258143 a(n) = Sum_{m = 1 .. ceiling(n/2)} binomial(n, m), n >= 1.
%F A258143 a(n) = 2^n - 2 - Sum_{i=1..floor(n/2)-1} binomial(n, i), n >= 2; a(1)=1. - _Enrique Navarrete_, Dec 16 2019
%F A258143 a(2*k+1) = 2^(2*k+1) - (1 + A008549(k)), k >= 0.
%F A258143 a(2*k) = 2^(2*k) - (1 + A000346(k-1)), k >= 1.
%F A258143 O.g.f.: x*(2+3*x+x^2 - (1-x^2)*(1+x)*c(x^2))/((1-(2*x)^2)*(1-x^2)) where c(x) is the o.g.f. of A000108.
%F A258143 O.g.f. for a(2*k+1), k >= 0: (2+x - (1-x)*c(x))/ ((1-4*x)*(1-x)).
%F A258143 O.g.f. for a(2*(k+1)), k >= 0: (3 - (1-x)*c(x))/ ((1-4*x)*(1-x)).
%F A258143 a(n) = A116406(n+1) - 1. - _Hugo Pfoertner_, Nov 14 2024
%e A258143 n=3: a(3) = 2^3 - (1 + A008549(1)) = 8 - (1 + 1) = 6.
%e A258143 n=4: a(4) = 2^4 - (1 + A000346(1)) = 16 - (1 +  5) = 10.
%t A258143 Table[Sum[Binomial[n, m], {m, Ceiling[n/2]}], {n, 50}] (* _Paolo Xausa_, Nov 14 2024 *)
%o A258143 (Haskell)
%o A258143 a258143 = sum . a257241_row  -- _Reinhard Zumkeller_, May 22 2015
%Y A258143 Cf. A257241, A000346, A008549, A000108, A116406, A258144.
%K A258143 nonn,easy
%O A258143 1,2
%A A258143 _Wolfdieter Lang_, May 22 2015