cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258144 Alternating row sums of A257241, Stifel's version of the arithmetical triangle.

This page as a plain text file.
%I A258144 #19 Nov 14 2024 08:23:49
%S A258144 1,2,0,-2,5,11,-14,-34,57,127,-209,-461,793,1717,-3002,-6434,11441,
%T A258144 24311,-43757,-92377,167961,352717,-646645,-1352077,2496145,5200301,
%U A258144 -9657699,-20058299,37442161,77558761,-145422674,-300540194,565722721,1166803111,-2203961429
%N A258144 Alternating row sums of A257241, Stifel's version of the arithmetical triangle.
%H A258144 Reinhard Zumkeller, <a href="/A258144/b258144.txt">Table of n, a(n) for n = 1..1000</a>
%F A258144 a(n) = Sum_{m = 1 .. ceiling(n/2)} (-1)^(m+1)* binomial(n, m), n >= 1.
%F A258144 a(2*k+1) = (1 - (-1)^(k+1)*A001791(k)), k >= 0.
%F A258144 a(2*k) =  (1 - (-1)^k*A001700(k-1)), k >= 1.
%F A258144 O.g.f. for a(2*k+1), k >= 0: (2+3*x - (1-x)*(1+2*x)*c(-x))/((1+4*x)*(1-x)), with the o.g.f. c(x) of A000108 (Catalan).
%F A258144 O.g.f. for a(2*(k+1)), k >= 0:
%F A258144   (3+2*x - (1-x)*c(-x))/((1+4*x)*(1-x)).
%F A258144 O.g.f. for a(n), n >= 1:
%F A258144 x*((1+x)*(2+x+2*x^2) - (1+x+2*x^2)*(1-x^2)*c(-x^2))/((1+4*x^2)*(1-x^2)).
%e A258144 n = 3: a(3) = (1 - A001791(1)) = 1 - 1 = 0.
%e A258144 n = 4: a(4) = (1 - A001700(1)) = 1 - 3 = -2.
%t A258144 Table[Sum[(-1)^(m+1)*Binomial[n, m], {m, Ceiling[n/2]}], {n, 50}] (* _Paolo Xausa_, Nov 14 2024 *)
%o A258144 (Haskell)
%o A258144 a258144 = sum . zipWith (*) (cycle [1, -1]) . a257241_row
%o A258144 -- _Reinhard Zumkeller_, May 22 2015
%Y A258144 Cf. A257241, A001700, A001791, A258143, A000108.
%Y A258144 Cf. A033999.
%K A258144 sign,easy
%O A258144 1,2
%A A258144 _Wolfdieter Lang_, May 22 2015