A258150 Triangle of Fibonacci's congruum (congruous) numbers divided by 24 based on primitive Pythagorean triangles. Areas divided by 6 of these triangles.
1, 0, 5, 10, 0, 14, 0, 35, 0, 30, 35, 0, 0, 0, 55, 0, 105, 0, 154, 0, 91, 84, 0, 220, 0, 260, 0, 140, 0, 231, 0, 390, 0, 0, 0, 204, 165, 0, 455, 0, 0, 0, 595, 0, 285, 0, 429, 0, 770, 0, 935, 0, 836, 0, 385, 286, 0, 0, 0, 1190, 0, 1330, 0, 0, 0, 506
Offset: 2
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 2: 1 3: 0 5 4: 10 0 14 5: 0 35 0 30 6: 35 0 0 0 55 7: 0 105 0 154 0 91 8: 84 0 220 0 260 0 140 9: 0 231 0 390 0 0 0 204 10: 165 0 455 0 0 0 595 0 285 11: 0 429 0 770 0 935 0 836 0 385 12: 286 0 0 0 1190 0 1330 0 0 0 506 ... The smallest nonzero number for each row with even n is T(n, 1), and for odd n it is T(n, n-1). The above mentioned nmin(N) will for N = 300 be 12. Therefore, no number > 300 will appear for rows with n > 12. ----------------------------------------------------- The corresponding quartets (C; x, y, z) are: n=2: (24; 5, 7, 1), n=3: (120; 13, 17, 7), n=4: (240; 17, 23, 7), (336; 25, 31, 17), n=5: (840; 29, 41, 1), (720; 41, 49, 31), n=6: (840; 37, 47, 23), (1320; 61, 71, 49), n=7: (2520; 53, 73, 17), (3696; 65, 89, 23), (2184; 85, 97, 71), n=8: (2016; 65, 79, 47), (5280; 73, 103, 7), (6240; 89, 119, 41), (3360; 113, 127, 97), n=9: (5544; 85, 113, 41), (9360; 97, 137, 7), (4896; 145, 161, 127), n=10: (3960; 101, 119, 79), (10920; 109, 151, 31), (14280; 149, 191, 89), (6840; 181, 199, 161), n=11: (10296; 125, 161, 73), (18480; 137, 193, 17), (22440; 157, 217, 47), (20064; 185, 233, 119), (9240; 221, 241, 199), n=12: (6864; 145, 167, 119), (28560; 169, 239, 1), (31920; 193, 263, 73), (12144; 265, 287, 241), ... ----------------------------------------------------- The corresponding primitive Pythagorean triples (u, v, x) are: n=2: [3, 4, 5], n=3: [5, 12, 13], n=4: [15, 8, 17], [7, 24, 25], n=5: [21, 20, 29],[9, 40, 41], n=6: [35, 12, 37], [11, 60, 61], n=7: [45, 28, 53], [33, 56, 65], [13, 84, 85], n=8: [63, 16, 65], [55, 48, 73], [39, 80, 89], [15, 112, 113], n=9: [77, 36, 85], [65, 72, 97], [17, 144, 145], n=10: [99, 20, 101], [91, 60, 109], [51, 140, 149], [19, 180, 181], n=11: [117, 44, 125], [105, 88, 137], [85, 132, 157], [57, 176, 185], [21, 220, 221], n=12: [143, 24, 145], [119, 120, 169], [95, 168, 193], [23, 264, 265], ...
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 2, 1920, pp. 459-472.
- L. E. Sigler, Leonardo Pisano, Fibonacci, The book of squares, Academic Press, 1987.
- B. L. van der Waerden, A History of Algebra, Springer, 1985, pp. 40-42.
- André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, pp. 13-14.
Programs
-
Mathematica
T[n_, m_] /; 2 <= m+1 <= n && OddQ[n+m] && CoprimeQ[n, m] := n*m*(n^2 - m^2)/6; T[, ] = 0; Table[T[n, m], {n, 2, 12}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jun 16 2015, after given formula *)
Formula
T(n, m) = n*m*(n^2 - m^2)/6 if 2 <= m+1 <= n, n+m odd, GCD(n, m) = 1 and 0 otherwise.
Comments