cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258162 Decimal expansion of the log Gamma integral LG_3 = Integral_{0..1} log(Gamma(x))^3 dx.

This page as a plain text file.
%I A258162 #16 Apr 06 2024 13:48:06
%S A258162 5,7,4,0,3,8,8,8,0,7,2,2,9,4,7,4,2,8,0,0,1,9,5,7,1,6,8,8,1,0,2,4,6,1,
%T A258162 4,6,2,9,6,1,0,1,3,0,0,7,4,5,4,8,7,3,3,3,1,4,2,5,4,0,2,4,5,1,2,3,8,8,
%U A258162 8,4,3,8,7,1,7,7,1,2,5,0,2,6,1,0,6,2,6,2,1,6,6,6,2,8,7,2,3,3,0,5,1,5,7,8
%N A258162 Decimal expansion of the log Gamma integral LG_3 = Integral_{0..1} log(Gamma(x))^3 dx.
%H A258162 G. C. Greubel, <a href="/A258162/b258162.txt">Table of n, a(n) for n = 1..1000</a>
%H A258162 David H. Bailey, David Borwein, and Jonathan M. Borwein, <a href="https://carmamaths.org/resources/jon/log-gamma.pdf">On Eulerian Log-Gamma Integrals and Tornheim-Witten Zeta Functions</a>.
%e A258162 5.7403888072294742800195716881024614629610130074548733314254...
%p A258162 evalf(Int(log(GAMMA(x))^3,x=0..1),120); # _Vaclav Kotesovec_, May 22 2015
%t A258162 LG3 = NIntegrate[LogGamma[x]^3, {x, 0, 1}, WorkingPrecision -> 104]; RealDigits[LG3] // First
%o A258162 (PARI) intnum(x=0, 1, log(gamma(x))^3) \\ _Michel Marcus_, Oct 24 2017
%Y A258162 Cf. A075700 (LG_1), A102887 (LG_2), A258163 (LG_4), A258164 (LG_5).
%K A258162 nonn,cons,easy
%O A258162 1,1
%A A258162 _Jean-François Alcover_, May 22 2015