cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258163 Decimal expansion of the log Gamma integral LG_4 = Integral_{0..1} log(Gamma(x))^4 dx.

This page as a plain text file.
%I A258163 #9 Apr 06 2024 13:48:44
%S A258163 2,3,3,8,9,5,1,4,4,6,5,5,1,6,8,0,1,6,1,9,6,0,0,5,5,9,1,0,5,0,5,9,1,4,
%T A258163 0,6,5,9,0,0,7,5,2,7,6,8,3,1,9,8,4,6,4,6,6,7,7,8,5,4,5,2,0,5,4,5,6,3,
%U A258163 6,4,7,9,5,2,5,5,8,0,1,4,8,8,8,1,0,1,7,7,7,0,4,0,3,1,5,9,8,2,6,4,8,6,5,7,9
%N A258163 Decimal expansion of the log Gamma integral LG_4 = Integral_{0..1} log(Gamma(x))^4 dx.
%H A258163 David H. Bailey, David Borwein, and Jonathan M. Borwein, <a href="https://carmamaths.org/resources/jon/log-gamma.pdf">On Eulerian Log-Gamma Integrals and Tornheim-Witten Zeta Functions</a>.
%e A258163 23.389514465516801619600559105059140659007527683198464667785452...
%p A258163 evalf(Int(log(GAMMA(x))^4,x=0..1),120); # _Vaclav Kotesovec_, May 22 2015
%t A258163 LG4 = NIntegrate[LogGamma[x]^4, {x, 0, 1}, WorkingPrecision -> 105];
%t A258163 RealDigits[LG4] // First
%Y A258163 Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258164 (LG_5).
%K A258163 nonn,cons,easy
%O A258163 2,1
%A A258163 _Jean-François Alcover_, May 22 2015