cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258164 Decimal expansion of the log Gamma integral LG_5 = Integral_{0..1} log(Gamma(x))^5 dx.

This page as a plain text file.
%I A258164 #9 Apr 06 2024 13:49:04
%S A258164 1,1,8,2,9,8,7,9,3,1,8,4,5,5,1,2,5,8,7,5,4,1,6,7,2,9,0,7,2,9,2,9,6,4,
%T A258164 4,8,4,9,0,2,9,2,8,5,2,9,0,1,0,8,2,0,6,5,7,4,7,3,4,1,1,0,4,6,0,5,3,5,
%U A258164 5,7,2,1,9,9,6,5,6,3,2,6,3,5,3,9,0,1,6,7,9,8,8,4,3,9,3,4,7,8,8,6,4,5,5,5,3
%N A258164 Decimal expansion of the log Gamma integral LG_5 = Integral_{0..1} log(Gamma(x))^5 dx.
%H A258164 David H. Bailey, David Borwein, and Jonathan M. Borwein, <a href="https://carmamaths.org/resources/jon/log-gamma.pdf">On Eulerian Log-Gamma Integrals and Tornheim-Witten Zeta Functions</a>.
%e A258164 118.2987931845512587541672907292964484902928529010820657473411046...
%p A258164 evalf(Int(log(GAMMA(x))^5,x=0..1),120); # _Vaclav Kotesovec_, May 22 2015
%t A258164 LG5 = NIntegrate[LogGamma[x]^5, {x, 0, 1}, WorkingPrecision -> 105]; RealDigits[LG5] // First
%Y A258164 Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258163 (LG_4).
%K A258164 nonn,cons,easy
%O A258164 3,3
%A A258164 _Jean-François Alcover_, May 22 2015