cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258168 Number of ways to write n as floor((p^2+q)/5) with p and q both prime.

Original entry on oeis.org

3, 4, 3, 4, 5, 4, 4, 4, 4, 7, 4, 5, 6, 4, 5, 5, 4, 5, 4, 3, 5, 6, 4, 6, 5, 6, 5, 5, 3, 6, 6, 7, 3, 7, 5, 8, 8, 5, 5, 9, 5, 4, 6, 7, 4, 7, 5, 6, 7, 5, 4, 5, 4, 7, 8, 6, 6, 8, 4, 8, 7, 5, 8, 7, 4, 7, 5, 7, 4, 6, 6, 13, 7, 7, 6, 8, 4, 10, 10, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 22 2015

Keywords

Comments

Conjecture: Let n be any positive integer. Then a(n) > 0. Moreover, one of the four consecutive numbers 5*n, 5*n+1, 5*n+2, 5*n+3 can be written as p^2+q with p and q both prime.
It seems that there are infinitely many positive integers n such that none of n, n+1, n+2, n+3, n+4 has the form p^2 + q with p and q both prime.
See also A258141 for a similar conjecture.
Note that neither 3763 nor 5443 can be written as floor((p^2+q)/4) with p and q both prime.

Examples

			a(1) = 3 since 1 = floor((2^2+2)/5) = floor((2^2+3)/5) = floor((2^2+5)/5) with 2, 3, 5 all prime.
a(2) = 4 since 2 = floor((2^2+7)/5) = floor((3^2+2)/5) = floor((3^2+3)/5) = floor((3^2+5)/5) with 2, 3, 5, 7 all prime.
		

Crossrefs

Programs

  • Mathematica
    Do[m=0;Do[If[PrimeQ[5n+r-Prime[k]^2],m=m+1],{r,0,4},{k,1,PrimePi[Sqrt[5n+r]]}];Print[n," ",m];Continue,{n,1,80}]