cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258192 Denominator of Integral_{x=0..1} Product_{k=1..n} x^k*(1-x^k) dx.

Original entry on oeis.org

6, 420, 72072, 760760, 1266697832400, 783333734619744, 3002950101013562700, 1253414030788528596187200, 27809824888100301666382826331840, 118802724769051077369996224554510800, 2005396188718644499811084404372455793370133120
Offset: 1

Views

Author

Vaclav Kotesovec, May 23 2015

Keywords

Comments

Limit n->infinity (A258191(n)/a(n))^(1/n) = 0.185155...
The limit is equal to 0.1851552893223595946473132111979542852738... = 1/5.400871904118154152466091119104270052029... (see A258234). - Vaclav Kotesovec, May 24 2015

Examples

			Product_{k=1..n} x^k*(1-x^k)
n=1 x - x^2
n=2 x^3 - x^4 - x^5 + x^6
n=3 x^6 - x^7 - x^8 + x^10 + x^11 - x^12
Integral Product_{k=1..n} x^k*(1-x^k) dx
n=1 x^2/2 - x^3/3
n=2 x^4/4 - x^5/5 - x^6/6 + x^7/7
n=3 x^7/7 - x^8/8 - x^9/9 + x^11/11 + x^12/12 - x^13/13
For Integral_{x=0..1} set x=1
n=1 1/2 - 1/3 = 1/6, a(1)=6
n=2 1/4 - 1/5 - 1/6 + 1/7 = 11/420, a(2)=420
n=3 1/7 - 1/8 - 1/9 + 1/11 + 1/12 - 1/13 = 293/72072, a(3)=72072
		

Crossrefs

Programs

  • Mathematica
    nmax=15; p=1; Table[p=Expand[p*x^n*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Denominator