cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A258219 #30 Aug 15 2022 10:28:35
%S A258219 1,1,1,1,2,4,1,3,10,25,1,4,18,74,208,1,5,28,153,706,2146,1,6,40,268,
%T A258219 1638,8162,26368,1,7,54,425,3172,20898,110410,375733,1,8,70,630,5500,
%U A258219 44164,307908,1708394,6092032,1,9,88,889,8838,82850,702844,5134293,29752066,110769550
%N A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A258219 A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
%C A258219 Conjecture: the g.f. G(k,x) for the k-th column satisfies the Riccati differential equation 2*x^2*d/dx(G(k,x)) + 1 + (k*x - 1)*G(k,x) + x*G^2(k,x) = 0 and hence, by Stokes 1982, has the continued fraction representation G(k,x) = 1/(1 - (k+1)*x/(1 - 3*x/(1 - (k+3)*x/(1 - 5*x/(1 - (k+5)*x/(1 - 7*x/(1 - ...))))))) of Stieltjes type. - _Peter Bala_, Jul 28 2022
%H A258219 Alois P. Heinz, <a href="/A258219/b258219.txt">Antidiagonals n = 0..140, flattened</a>
%H A258219 A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
%H A258219 Wikipedia, <a href="https://en.wikipedia.org/wiki/Feynman_diagram">Feynman diagram</a>
%H A258219 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>
%F A258219 A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258220(n,i).
%e A258219 Square array A(n,k) begins:
%e A258219      1,    1,     1,     1,     1,      1, ...
%e A258219      1,    2,     3,     4,     5,      6, ...
%e A258219      4,   10,    18,    28,    40,     54, ...
%e A258219     25,   74,   153,   268,   425,    630, ...
%e A258219    208,  706,  1638,  3172,  5500,   8838, ...
%e A258219   2146, 8162, 20898, 44164, 82850, 143046, ...
%e A258219   ...
%p A258219 b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
%p A258219       `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
%p A258219                  + b(x-1, y+1, true, k)  ))
%p A258219     end:
%p A258219 A:= (n,k)-> b(2*n, 0, false, k):
%p A258219 seq(seq(A(n, d-n), n=0..d), d=0..12);
%t A258219 b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Jan 09 2016, after _Alois P. Heinz_ *)
%Y A258219 Columns k=0-2 give: A005411 (for n>0), A000698(n+1), A005412(n+1).
%Y A258219 Rows n=0-2 give: A000012, A000027(k+1), A028552(k+1).
%Y A258219 Main diagonal gives A292693.
%Y A258219 Cf. A258220, A258222.
%K A258219 nonn,tabl
%O A258219 0,5
%A A258219 _Alois P. Heinz_, May 23 2015