This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258227 #17 Dec 04 2021 12:34:07 %S A258227 12,3,45,6,78,9,1011,12,1314,15,1617,18,192,0,2,12,2,2,32,4,2,52,6,2, %T A258227 72,8,2,930,3,132,3,3,3,435,3,6,3,738,3,9,4041,42,4,34,4,4,54,6,4,74, %U A258227 8,4,950,5,15,25,35,45,5,5,65,75,85,960,6,16,2,6,3,6 %N A258227 Concatenate the natural numbers, then partition into minimal strings so that adjacent terms have a common divisor greater than 1. %C A258227 00 -> 0 is not allowed, else all digits will not appear in the concatenation of terms. For example, a(198)..a(201) = 198, 19920, 0, 2 and not 198, 192, 0, 2. - _Michael S. Branicky_, Dec 03 2021 %H A258227 Michael S. Branicky, <a href="/A258227/b258227.txt">Table of n, a(n) for n = 1..10000</a> (24 terms corrected in terms 1..10000 from Reinhard Zumkeller) %F A258227 GCD(a(n), a(n+1)) > 1. %e A258227 . a(n) | 12,3,45,6,78,9,1011,12,1314,15,1617,18,192,0,2,12,2,2,32,4,2,52 %e A258227 --------+---------------------------------------------------------------- %e A258227 . gcd | 3 3 3 6 3 3 3 6 3 3 3 6 192 2 2 2 2 2 4 2 2 . %o A258227 (Haskell) %o A258227 a258227 n = a258227_list !! (n-1) %o A258227 a258227_list = f 12 1 (map toInteger $ tail a007376_list) where %o A258227 f x y (d:ds) | gcd x y > 1 = y : f y d ds %o A258227 | otherwise = f x (10 * y + d) ds %o A258227 (Python) %o A258227 from math import gcd %o A258227 from itertools import count %o A258227 def diggen(): %o A258227 for k in count(1): yield from list(map(int, str(k))) %o A258227 def aupton(terms): %o A258227 g = diggen() %o A258227 alst, aset = [12], {12} %o A258227 _, _, nxtd, nxtnxtd = next(g), next(g), next(g), next(g) %o A258227 for n in range(2, terms+1): %o A258227 an, nxtd, nxtnxtd = nxtd, nxtnxtd, next(g) %o A258227 while gcd(an, alst[-1]) == 1 or nxtd == nxtnxtd == 0: %o A258227 an, nxtd, nxtnxtd = int(str(an) + str(nxtd)), nxtnxtd, next(g) %o A258227 alst.append(an); aset.add(an) %o A258227 return alst %o A258227 print(aupton(70)) # _Michael S. Branicky_, Dec 03 2021 %Y A258227 Cf. A002782, A007376. %K A258227 nonn,base %O A258227 1,1 %A A258227 _Reinhard Zumkeller_, May 23 2015