A258229 Numerator of Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx.
1, 5, 41, 188, 20777, 126661, 375407075, 4551271607, 2186878968457691, 405572061653677013, 579868609560670025014303, 756499881167742750802544581, 90137667815984749912207449629, 12095883009361301429642260272492831583, 83142433646555338064479023776802561123293
Offset: 1
Keywords
Examples
Product_{k=1..n} (1-x^k) n=1 1 - x n=2 1 - x - x^2 + x^3 n=3 1 - x - x^2 + x^4 + x^5 - x^6 Integral Product_{k=1..n} (1-x^k) dx n=1 x - x^2/2 n=2 x - x^2/2 - x^3/3 + x^4/4 n=3 x - x^2/2 - x^3/3 + x^5/5 + x^6/6 - x^7/7 For Integral_{x=0..1} set x=1 n=1 1 - 1/2 = 1/2, a(1) = 1 n=2 1 - 1/2 - 1/3 + 1/4 = 5/12, a(2) = 5 n=3 1 - 1/2 - 1/3 + 1/5 + 1/6 - 1/7 = 41/105, a(3) = 41
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..69
- StackExchange - Mathematica, No response to an infinite limit
Programs
-
Mathematica
nmax=15; p=1; Table[p=Expand[p*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Numerator
Comments