A258230 Denominator of Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx.
2, 12, 105, 495, 55440, 340340, 1012647636, 12304749600, 5920545668637600, 1098951951860282520, 1572101004939647757775200, 2051717579526635495717258016, 244523633377266327241371614400, 32818916025992059215981780272862841200
Offset: 1
Keywords
Examples
Product_{k=1..n} (1-x^k) n=1 1 - x n=2 1 - x - x^2 + x^3 n=3 1 - x - x^2 + x^4 + x^5 - x^6 Integral Product_{k=1..n} (1-x^k) dx n=1 x - x^2/2 n=2 x - x^2/2 - x^3/3 + x^4/4 n=3 x - x^2/2 - x^3/3 + x^5/5 + x^6/6 - x^7/7 For Integral_{x=0..1} set x=1 n=1 1 - 1/2 = 1/2, a(1) = 2 n=2 1 - 1/2 - 1/3 + 1/4 = 5/12, a(2) = 12 n=3 1 - 1/2 - 1/3 + 1/5 + 1/6 - 1/7 = 41/105, a(3) = 105
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..69
- StackExchange - Mathematica, No response to an infinite limit
Programs
-
Mathematica
nmax=15; p=1; Table[p=Expand[p*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Denominator
Comments