This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258269 #10 Sep 08 2022 08:46:12 %S A258269 59,5297,7417,81769,152419,714479,1237037,3330907,25248317,64648901, %T A258269 84801217,90728159,286628773,530133671,554065817,823543381,1028270917, %U A258269 1096980919,1299792317,1321357391,1417523659,1574410169,1648622903,1997248987,2084078057,2556384373 %N A258269 Primes of the form p^3 + q^2 + r, where p, q, r are consecutive primes. %H A258269 K. D. Bajpai, <a href="/A258269/b258269.txt">Table of n, a(n) for n = 1..10000</a> %e A258269 a(1) = 59 is prime of the form 3^3 + 5^2 + 7. %e A258269 a(2) = 5297 is prime of the form 17^3 + 19^2 + 23. %p A258269 A258269:= n-> (ithprime(n)^3+ithprime(n+1)^2+ithprime(n+2)): select(isprime, [seq((A258269(n), n=1..5000))]); %t A258269 Select[Table[p = Prime[n]; q = NextPrime[p]; r = NextPrime[q]; p^3 + q^2 + r, {n, 5000}], PrimeQ] %o A258269 (Magma) [k: p in PrimesUpTo (3000) | IsPrime(k) where k is (p^3 + NextPrime(p)^2 + NextPrime(NextPrime(p)))]; %o A258269 (PARI) forprime(p=1, 5000, q=nextprime(p+1); r=nextprime(q+1); k=(p^3 + q^2 + r); if(isprime(k), print1(k,", "))) %Y A258269 Cf. A000040, A034962, A133529, A133530. %K A258269 nonn %O A258269 1,1 %A A258269 _K. D. Bajpai_, May 25 2015