This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258289 #18 May 01 2022 13:51:30 %S A258289 1,1,1,3,3,7,9,17,21,43,57,109,157,301,447,895,1307,2663,4207,8463, %T A258289 13283,28489,45151,95485,157767,336711,561603,1236963,2061173,4567227, %U A258289 7946575,17516101,30324977,69519697,121465499,276609723,496333307,1137900605 %N A258289 Number of partitions of 1, 2, 3, or more copies of n into distinct parts. %F A258289 a(n) = Sum_{k=1..A065033(n)} A258280(n,k). %F A258289 a(n) = Sum_{k=1..max(1,ceiling(n/2))} 1/k! * [Product_{i=1..k} x_i^n] Product_{j>0} (1+Sum_{i=1..k} x_i^j). %e A258289 a(0) = 1: []. %e A258289 a(1) = 1: [1]. %e A258289 a(2) = 1: [2]. %e A258289 a(3) = 3: [3], [2,1], [3;2,1]. %e A258289 a(4) = 3: [4], [3,1], [4;3,1]. %e A258289 a(5) = 7: [5], [4,1], [3,2], [5;4,1], [5;3,2], [4,1;3,2], [5;4,1;3,2]. %e A258289 a(7) = 17: [7], [6,1], [5,2], [4,3], [4,2,1], [7;6,1], [7;5,2], [7;4,3], [7;4,2,1], [6,1;5,2], [6,1;4,3], [5,2;4,3], [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3], [7;6,1;5,2;4,3]. %p A258289 b:= proc() option remember; local m; m:= args[nargs]; %p A258289 `if`(nargs=1, 1, `if`(args[1]=0, b(args[t] $t=2..nargs), %p A258289 `if`(m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2, 0, %p A258289 b(args[t] $t=1..nargs-1, m-1)+add(`if`(args[j]-m<0, 0, %p A258289 b(sort([seq(args[i]-`if`(i=j, m, 0), i=1..nargs-1)])[] %p A258289 , m-1)), j=1..nargs-1)))) %p A258289 end: %p A258289 a:= n-> add(b(n$k+1)/k!, k=1..max(1, ceil(n/2))): %p A258289 seq(a(n), n=0..20); %t A258289 disParts[n_] := disParts[n] = Select[IntegerPartitions[n], Length[#] == Length[Union[#]]&]; %t A258289 T[n_, k_] := Select[Subsets[disParts[n], {k}], Length[Flatten[#]] == Length[Union[Flatten[#]]]&] // Length; %t A258289 a[n_] := a[n] = If[n == 0, 1, Sum[T[n, k], {k, 1, Quotient[n+1, 2]}]]; %t A258289 Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* _Jean-François Alcover_, May 01 2022 *) %Y A258289 Cf. A000009, A065033, A258280. %K A258289 nonn %O A258289 0,4 %A A258289 _Alois P. Heinz_, May 25 2015