cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258295 Number of partitions of 5*n^2 into parts that are at most n.

This page as a plain text file.
%I A258295 #11 Jun 11 2015 05:12:02
%S A258295 1,1,11,192,4263,106852,2897747,82966258,2472338185,75966810293,
%T A258295 2391508958235,76782438832425,2505642670439980,82893573492724961,
%U A258295 2774547946438608789,93807671621922558215,3199617653993448321146,109979504522862990517172,3806257106793028952525938
%N A258295 Number of partitions of 5*n^2 into parts that are at most n.
%H A258295 Vaclav Kotesovec, <a href="/A258295/b258295.txt">Table of n, a(n) for n = 0..230</a>
%F A258295 a(n) ~ c * d^n / n^2, where d = 38.7729855097144987072847461256815071909..., c = 0.0318193213988281353709268311928... .
%p A258295 T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(5*n^2, n), n=0..20);
%t A258295 (* A program to compute the constant d = 38.7729855... *) With[{j=5}, r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->100]] (* _Vaclav Kotesovec_, Jun 10 2015 *)
%Y A258295 Cf. A206226, A258296, A258293, A258294.
%K A258295 nonn
%O A258295 0,3
%A A258295 _Vaclav Kotesovec_, May 25 2015