cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A258297 Number of partitions of n*(n+1)*(n+2) into parts that are at most n.

Original entry on oeis.org

1, 1, 13, 331, 13561, 776594, 57773582, 5320252480, 586352480958, 75438829494131, 11116206652400681, 1848033852642973772, 342436117841931383400, 70020229273505952925559, 15667865938977592230047929, 3809417116914053901413289249, 1000291703885548521424635046427
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 13/4) * n^(n-3) / (2*Pi).

A258299 Number of partitions of n*(n-1)*(n-2) into parts that are at most n.

Original entry on oeis.org

1, 1, 1, 7, 169, 7166, 436140, 34690401, 3418486403, 402588217564, 55217486292383, 8650673262689142, 1524827150449505994, 298774748146352115019, 64436825369109396329518, 15171417879016739747222223, 3872658124805520661780283663, 1065387724298834666633864592587
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n - 11/4) * n^(n-3) / (2*Pi).

A258300 Number of partitions of n*(n-1)*(n-2)/6 into parts that are at most n.

Original entry on oeis.org

1, 1, 1, 1, 5, 30, 282, 3539, 55974, 1065947, 23785645, 608889106, 17594781914, 566603884871, 20123663539549, 781500841147604, 32946304088342094, 1498526109256063585, 73147202427442412812, 3814178439827570160925, 211598573411998923138880
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n - 3/2) * n^(n-3) / (2*Pi * 6^(n-1)).

A258301 Number of partitions of n*(n+1)*(2n+1)/6 into parts that are at most n.

Original entry on oeis.org

1, 1, 3, 24, 297, 5260, 123755, 3648814, 129828285, 5425234114, 260818130929, 14194798070042, 863357482347465, 58068803644110427, 4281318749672322843, 343463734454952001605, 29792472711307060688049, 2778959190056157071592315, 277420695604265258419161136
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 9/4) * n^(n-3) / (2*Pi * 3^(n-1)).
Showing 1-4 of 4 results.