A258316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 or 0011.
5, 7, 7, 10, 9, 10, 15, 12, 12, 15, 23, 17, 15, 17, 23, 36, 25, 20, 20, 25, 36, 57, 38, 28, 25, 28, 38, 57, 91, 59, 41, 33, 33, 41, 59, 91, 146, 93, 62, 46, 41, 46, 62, 93, 146, 235, 148, 96, 67, 54, 54, 67, 96, 148, 235, 379, 237, 151, 101, 75, 67, 75, 101, 151, 237, 379, 612
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....1..1..1..1..1 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0 ..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0 ..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0 ..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1104
Crossrefs
Column 1 is A018910
Column 2 is A157727(n+3)
Column 3 is A187107(n+3)
Diagonal is A001595(n+2)
Superdiagonal 1 is A000071(n+5)
Superdiagonal 2 is A001610(n+3)
Superdiagonal 3 is A001595(n+4)
Superdiagonal 5 is A022308(n+5)
Superdiagonal 6 is A022319(n+5)
Superdiagonal 7 is A022407(n+5)
Superdiagonal 9 is A022323(n+7)
Formula
Empirical: T(n,k) = Fibonacci(n+3) +Fibonacci(k+3) -1
Empirical for rows, columns and nw-se diagonals: a(n) = 2*a(n-1) -a(n-3)
Comments