This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258325 #31 Jul 26 2015 09:56:55 %S A258325 1,2,6,24,144,1152,13824,221184,5087232,157704192,6781280256, %T A258325 386532974592,30149572018176,3075256345853952,418234863036137472, %U A258325 74027570757396332544,17174396415715949150208,5117970131883352846761984,1975536470906974198850125824 %N A258325 a(n) = Product_{k=1..n} (1 + p(k)), where p(k) is the partition function A000041. %H A258325 Alois P. Heinz, <a href="/A258325/b258325.txt">Table of n, a(n) for n = 0..150</a> %H A258325 Vaclav Kotesovec, <a href="http://oeis.org/A058694/a058694_2.pdf">The partition factorial constant and asymptotics of the sequence A058694</a> %F A258325 a(n) ~ c * A058694(n), where c = Product_{k>=1} (1 + 1/p(k)) = 7.60150293364724365227288154074110141857580676049277152624021470033199348... %p A258325 a:= proc(n) option remember: `if`(n<1, 1, %p A258325 (1+combinat[numbpart](n))*a(n-1)) %p A258325 end: %p A258325 seq(a(n), n=0..20); %t A258325 Table[Product[PartitionsP[k]+1,{k,1,n}],{n,0,20}] %Y A258325 Cf. A000041, A058694, A078506, A082480. %K A258325 nonn %O A258325 0,2 %A A258325 _Vaclav Kotesovec_, Jul 19 2015 %E A258325 a(0)=1 prepended by _Alois P. Heinz_, Jul 26 2015