cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258346 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 20, 39, 72, 144, 280, 567, 1112, 2187, 4204, 8073, 15309, 28986, 54548, 102286, 190881, 354717, 656194, 1208712, 2217624, 4052633, 7379630, 13390098, 24215587, 43649482, 78435884, 140513905, 250988186, 447037367, 794031641, 1406585604
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (-343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.