This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258349 #12 Nov 11 2020 08:49:52 %S A258349 1,0,1,3,7,13,28,52,107,203,396,741,1409,2596,4813,8777,15972,28737, %T A258349 51553,91644,162288,285377,499653,869758,1507615,2599974,4465606, %U A258349 7635607,13005252,22061424,37287395,62788012,105365891,176211393,293741195,488101711,808604106 %N A258349 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)/2). %H A258349 Vaclav Kotesovec, <a href="/A258349/b258349.txt">Table of n, a(n) for n = 0..1000</a> %F A258349 a(n) ~ 1 / (2^(155/96) * 15^(11/96) * Pi^(1/24) * n^(59/96)) * exp(-Zeta'(-1)/2 - Zeta(3) / (8*Pi^2) - 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 / (2^(7/4) * Pi^5) * n^(1/4) - sqrt(15/2) * Zeta(3) / Pi^2 * sqrt(n) + 2^(7/4)*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962). %F A258349 G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/(2*k)). - _Ilya Gutkovskiy_, Aug 22 2018 %t A258349 nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)/2),{k,1,nmax}],{x,0,nmax}],x] %o A258349 (SageMath) # uses[EulerTransform from A166861] %o A258349 b = EulerTransform(lambda n: binomial(n,2)) %o A258349 print([b(n) for n in range(37)]) # _Peter Luschny_, Nov 11 2020 %Y A258349 Cf. A000294, A023871, A027999, A258347, A258348, A258350, A258351, A258352. %K A258349 nonn %O A258349 0,4 %A A258349 _Vaclav Kotesovec_, May 27 2015