This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258351 #5 May 28 2015 03:36:37 %S A258351 1,0,0,6,24,60,141,354,996,2720,7194,18306,46154,115506,288195,713210, %T A258351 1749732,4253148,10259302,24573390,58491312,138371354,325415727, %U A258351 760899396,1769420183,4093054602,9420739965,21578842582,49199229066,111672215658,252381169048 %N A258351 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)). %H A258351 Vaclav Kotesovec, <a href="/A258351/b258351.txt">Table of n, a(n) for n = 0..1000</a> %F A258351 a(n) ~ (3*Zeta(5))^(79/600) / (2^(21/200) * sqrt(5*Pi) * n^(379/600)) * exp(2*Zeta'(-1) + 3*Zeta(3)/(4*Pi^2) - Pi^16 / (518400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3) + (-Pi^12 / (1800000 * 2^(3/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(3/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(1/5) * 3^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(1/5) * (3*Zeta(5))^(2/5))) * n^(2/5) - Pi^4 / (30 * 2^(4/5) * (3*Zeta(5))^(3/5)) * n^(3/5) + 5 * (3*Zeta(5))^(1/5) / 2^(7/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4. %t A258351 nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x] %Y A258351 Cf. A000335, A023872, A258345, A258347, A258348, A258349, A258350, A258352. %K A258351 nonn %O A258351 0,4 %A A258351 _Vaclav Kotesovec_, May 27 2015