A258352 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).
1, 0, 0, 1, 4, 10, 21, 39, 76, 145, 294, 581, 1169, 2276, 4435, 8494, 16237, 30768, 58221, 109466, 205223, 382658, 710808, 1314091, 2420437, 4439753, 8115645, 14781062, 26833241, 48550863, 87575527, 157480827, 282362462, 504819198, 900058558, 1600424247
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]
-
SageMath
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: binomial(n, 3)) print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
Formula
a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 + Zeta(3)/(8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2/(90*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5 * Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.