cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258361 Sum over all partitions lambda of n into 6 distinct parts of Product_{i:lambda} prime(i).

This page as a plain text file.
%I A258361 #4 May 27 2015 17:27:07
%S A258361 30030,39270,90300,177930,381222,722434,1477619,2309879,4194446,
%T A258361 6846481,11667593,18212397,30309561,45149226,70722044,105790662,
%U A258361 160115543,232478684,346845682,489561123,709058342,994019962,1405076982,1932862089,2705315737,3653574123
%N A258361 Sum over all partitions lambda of n into 6 distinct parts of Product_{i:lambda} prime(i).
%H A258361 Alois P. Heinz, <a href="/A258361/b258361.txt">Table of n, a(n) for n = 21..1000</a>
%p A258361 g:= proc(n, i) option remember; convert(series(`if`(n=0, 1,
%p A258361       `if`(i<1, 0, add(g(n-i*j, i-1)*(ithprime(i)*x)^j
%p A258361       , j=0..min(1, n/i)))), x, 7), polynom)
%p A258361     end:
%p A258361 a:= n-> coeff(g(n$2), x, 6):
%p A258361 seq(a(n), n=21..60);
%Y A258361 Column k=6 of A258323.
%Y A258361 Cf. A000040.
%K A258361 nonn
%O A258361 21,1
%A A258361 _Alois P. Heinz_, May 27 2015